Skip to main content
Log in

Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries

  • Articles
  • SPECIAL ISSUE: Dedicated to the 100th Anniversary of Nankai University
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

With the booming development of portable and wearable electronic devices, flexible energy storage devices have attracted great attention. Among various energy storage devices, aqueous zinc ion batteries (ZIBs) are one of the promising candidates due to their low cost, good safety, high energy and power densities. However, the conventional cathodes of aqueous ZIBs were often prepared by mixing active materials with binders and conductive additives and then coating them onto current collectors. The resultant cathodes often suffer from unsatisfied flexibility. Herein, we fabricated freestanding reduced graphene oxide/ NaV3O8•1.5H2O (RGO/NVO) composite films with interlinked multilayered architecture by a vacuum filtrating process. Such composite films exhibit excellent mechanical property and high electronic conductivity. Owing to unique architecture, they display a high capacity of 410 mA h g−1 and excellent cycling performance up to 2000 cycles with a high capacity retention of 94%. Moreover, RGO/NVO composite films can directly serve as the cathodes of flexible aqueous ZIBs. As a proof of concept, flexible ZIBs were assembled based on the composite films. Impressively, they exhibit stable performance at different bending states, demonstrating great potential application in flexible energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng Y, Zhang X, Meng Y, Yu M, Yi J, Wu Y, Lu X, Tong Y. Adv Mater, 2017, 29: 1700274

    Article  CAS  Google Scholar 

  2. Li H, Han C, Huang Y, Huang Y, Zhu M, Pei Z, Xue Q, Wang Z, Liu Z, Tang Z, Wang Y, Kang F, Li B, Zhi C. Energy Environ Sci, 2018, 11: 941–951

    Article  CAS  Google Scholar 

  3. Liu L, Niu Z, Chen J. Chem Soc Rev, 2016, 45: 4340–4363

    Article  CAS  PubMed  Google Scholar 

  4. Niu Z, Liu L, Zhang L, Zhou W, Chen X, Xie S. Adv Energy Mater, 2015, 5: 1500677

    Article  CAS  Google Scholar 

  5. Chen C, Cao J, Lu Q, Wang X, Song L, Niu Z, Chen J. Adv Funct Mater, 2016, 27: 1604639

    Article  CAS  Google Scholar 

  6. Amin K, Meng Q, Ahmad A, Cheng M, Zhang M, Mao L, Lu K, Wei Z. Adv Mater, 2018, 30: 1703868

    Article  CAS  Google Scholar 

  7. Li S, Meng X, Yi Q, Alonso JA, Fernández-Díaz MT, Sun C, Wang ZL. Nano Energy, 2018, 52: 510–516

    Article  CAS  Google Scholar 

  8. Chen C, Cao J, Wang X, Lu Q, Han M, Wang Q, Dai H, Niu Z, Chen J, Xie S. Nano Energy, 2017, 42: 187–194

    Article  CAS  Google Scholar 

  9. Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. Chem Rev, 2014, 114: 11788–11827

    Article  CAS  PubMed  Google Scholar 

  10. Yamada Y, Usui K, Sodeyama K, Ko S, Tateyama Y, Yamada A. Nat Energy, 2016, 1: 16129

    Article  CAS  Google Scholar 

  11. Kundu D, Adams BD, Duffort V, Vajargah SH, Nazar LF. Nat Energy, 2016, 1: 16119

    Article  CAS  Google Scholar 

  12. Pan H, Shao Y, Yan P, Cheng Y, Han KS, Nie Z, Wang C, Yang J, Li X, Bhattacharya P, Mueller KT, Liu J. Nat Energy, 2016, 1: 16039

    Article  CAS  Google Scholar 

  13. Zhang N, Dong Y, Jia M, Bian X, Wang Y, Qiu M, Xu J, Liu Y, Jiao L, Cheng F. ACS Energy Lett, 2018, 3: 1366–1372

    Article  CAS  Google Scholar 

  14. Yang Y, Tang Y, Fang G, Shan L, Guo J, Zhang W, Wang C, Wang L, Zhou J, Liang S. Energy Environ Sci, 2018, 11: 3157–3162

    Article  CAS  Google Scholar 

  15. Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y. Nano Energy, 2016, 25: 211–217

    Article  CAS  Google Scholar 

  16. Fang G, Zhou J, Pan A, Liang S. ACS Energy Lett, 2018, 3: 2480–2501

    Article  CAS  Google Scholar 

  17. Song M, Tan H, Chao D, Fan HJ. Adv Funct Mater, 2018, 28: 1802564

    Article  CAS  Google Scholar 

  18. Xu C, Li B, Du H, Kang F. Angew Chem Int Ed, 2012, 51: 933–935

    Article  CAS  Google Scholar 

  19. Sun W, Wang F, Hou S, Yang C, Fan X, Ma Z, Gao T, Han F, Hu R, Zhu M, Wang C. J Am Chem Soc, 2017, 139: 9775–9778

    Article  CAS  PubMed  Google Scholar 

  20. Zhang N, Cheng F, Liu J, Wang L, Long X, Liu X, Li F, Chen J. Nat Commun, 2017, 8: 405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang L, Chen L, Zhou X, Liu Z. Adv Energy Mater, 2015, 5: 1400930

    Article  CAS  Google Scholar 

  22. Trócoli R, La Mantia F. ChemSusChem, 2015, 8: 481–485

    Article  CAS  PubMed  Google Scholar 

  23. Zhang L, Chen L, Zhou X, Liu Z. Sci Rep, 2015, 5: 18263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wan F, Zhang L, Wang X, Bi S, Niu Z, Chen J. Adv Funct Mater, 2018, 28: 1804975

    Article  CAS  Google Scholar 

  25. Guo Z, Ma Y, Dong X, Huang J, Wang Y, Xia Y. Angew Chem Int Ed, 2018, 57: 11737–11741

    Article  CAS  Google Scholar 

  26. Kundu D, Oberholzer P, Glaros C, Bouzid A, Tervoort E, Pasquarello A, Niederberger M. Chem Mater, 2018, 30: 3874–3881

    Article  CAS  Google Scholar 

  27. Zhao Q, Huang W, Luo Z, Liu L, Lu Y, Li Y, Li L, Hu J, Ma H, Chen J. Sci Adv, 2018, 4: eaao1761

    Google Scholar 

  28. Chao D, Zhu CR, Song M, Liang P, Zhang X, Tiep NH, Zhao H, Wang J, Wang R, Zhang H, Fan HJ. Adv Mater, 2018, 30: 1803181

    Article  CAS  Google Scholar 

  29. Yan M, He P, Chen Y, Wang S, Wei Q, Zhao K, Xu X, An Q, Shuang Y, Shao Y, Mueller KT, Mai L, Liu J, Yang J. Adv Mater, 2018, 30: 1703725

    Article  CAS  Google Scholar 

  30. Alfaruqi MH, Mathew V, Song J, Kim S, Islam S, Pham DT, Jo J, Kim S, Baboo JP, Xiu Z, Lee KS, Sun YK, Kim J. Chem Mater, 2017, 29: 1684–1694

    Article  CAS  Google Scholar 

  31. Dai X, Wan F, Zhang L, Cao H, Niu Z. Energy Storage Mater, 2018, doi: 10.1016/j.ensm.2018.07.022

    Google Scholar 

  32. Hu P, Zhu T, Wang X, Wei X, Yan M, Li J, Luo W, Yang W, Zhang W, Zhou L, Zhou Z, Mai L. Nano Lett, 2018, 18: 1758–1763

    Article  CAS  PubMed  Google Scholar 

  33. Soundharrajan V, Sambandam B, Kim S, Alfaruqi MH, Putro DY, Jo J, Kim S, Mathew V, Sun YK, Kim J. Nano Lett, 2018, 18: 2402–2410

    Article  CAS  PubMed  Google Scholar 

  34. Wan F, Zhang L, Dai X, Wang X, Niu Z, Chen J. Nat Commun, 2018, 9: 1656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang S, Lohe MR, Müllen K, Feng X. Adv Mater, 2016, 28: 6213–6221

    Article  CAS  PubMed  Google Scholar 

  36. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J. Adv Funct Mater, 2009, 19: 2782–2789

    Article  CAS  Google Scholar 

  37. Cao J, Chen C, Chen K, Lu Q, Wang Q, Zhou P, Liu D, Song L, Niu Z, Chen J. J Mater Chem A, 2017, 5: 15008–15016

    Article  CAS  Google Scholar 

  38. Cheng HM. Sci China Chem, 2018, 61: 1475–1476

    Article  CAS  Google Scholar 

  39. Ma J, Xiang Z, Zhang J. Sci China Chem, 2018, 61: 592–597

    Article  CAS  Google Scholar 

  40. Luo S, Yao M, Lei S, Yan P, Wei X, Wang X, Liu L, Niu Z. Nanoscale, 2017, 9: 4646–4651

    Article  CAS  PubMed  Google Scholar 

  41. Kim J, Cote LJ, Kim F, Yuan W, Shull KR, Huang J. J Am Chem Soc, 2010, 132: 8180–8186

    Article  CAS  PubMed  Google Scholar 

  42. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen SBT, Ruoff RS. Nature, 2007, 448: 457–460

    Article  CAS  PubMed  Google Scholar 

  43. Zhang K, Park M, Zhou L, Lee GH, Li W, Kang YM, Chen J. Adv Funct Mater, 2016, 26: 6728–6735

    Article  CAS  Google Scholar 

  44. Chao D, Zhu C, Yang P, Xia X, Liu J, Wang J, Fan X, Savilov SV, Lin J, Fan HJ, Shen ZX. Nat Commun, 2016, 7: 12122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chao D, Liang P, Chen Z, Bai L, Shen H, Liu X, Xia X, Zhao Y, Savilov SV, Lin J, Shen ZX. ACS Nano, 2016, 10: 10211–10219

    Article  CAS  PubMed  Google Scholar 

  46. Xia X, Chao D, Zhang Y, Zhan J, Zhong Y, Wang X, Wang Y, Shen ZX, Tu J, Fan HJ. Small, 2016, 12: 3048–3058

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21573116, 51822205, 21875121, 51602218), Ministry of Science and Technology of China (2017YFA0206701), Ministry of Education of China (B12015), Tianjin Basic and High-Tech Development (16PTSYJC00030), the Fundamental Research Funds for the Central Universities and the Young Thousand Talents Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Niu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, F., Wang, X., Bi, S. et al. Freestanding reduced graphene oxide/sodium vanadate composite films for flexible aqueous zinc-ion batteries. Sci. China Chem. 62, 609–615 (2019). https://doi.org/10.1007/s11426-018-9394-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9394-1

Keywords

Navigation