Skip to main content
Log in

High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This work developed a facile way to mass-produce a carbon-coated TiP2O7 nanoporous microsphere (TPO-NMS) as anode material for aqueous lithium-ion batteries via solid-phase synthesis combined with spray drying method. TiP2O7 shows great prospect as anode for aqueous rechargeable lithium-ion batteries (ALIBs) in view of its appropriate intercalation potential of −0.6 V (vs. SCE) before hydrogen evolution in aqueous electrolytes. The resulting sample presents the morphology of secondary microspheres (ca. 20 μm) aggregated by carbon-coated primary nanoparticles (100 nm), in which the primary nanoparticles with uniform carbon coating and sophisticated pore structure greatly improve its electrochemical performance. Consequently, TPONMS delivers a reversible capacity of 90 mA h/g at 0.1 A/g, and displays enhanced rate performance and good cycling stability with capacity retention of 90% after 500 cycles at 0.2 A/g. A full cell containing TPO-NMS anode and LiMn2O4 cathode delivers a specific energy density of 63 W h/kg calculated on the total mass of anode and cathode. It also shows good rate capacity with 56% capacity maintained at 10 A/g rate (vs. 0.1 A/g), as well as long cycle life with the capacity retention of 82% after 1000 cycles at 0.5 A/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kim H, Hong J, Park KY, Kim H, Kim SW, Kang K. Chem Rev, 2014, 114: 11788–11827

    Article  CAS  PubMed  Google Scholar 

  2. Chang Z, Yang Y, Li M, Wang X, Wu Y. J Mater Chem A, 2014, 2: 10739–10755

    Article  CAS  Google Scholar 

  3. Alias N, Mohamad AA. J Power Sources, 2015, 274: 237–251

    Article  CAS  Google Scholar 

  4. Li W, Dahn JR, Wainwright DS. Science, 1994, 264: 1115–1118

    Article  CAS  PubMed  Google Scholar 

  5. Köhler J, Makihara H, Uegaito H, Inoue H, Toki M. Electrochim Acta, 2000, 46: 59–65

    Article  Google Scholar 

  6. Wang H, Zeng Y, Huang K, Liu S, Chen L. Electrochim Acta, 2007, 52: 5102–5107

    Article  CAS  Google Scholar 

  7. Wang H, Huang K, Zeng Y, Yang S, Chen L. Electrochim Acta, 2007, 52: 3280–3285

    Article  CAS  Google Scholar 

  8. Wang G, Qu Q, Wang B, Shi Y, Tian S, Wu Y. ChemPhysChem, 2008, 9: 2299–2301

    Article  CAS  PubMed  Google Scholar 

  9. Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK. J Power Sources, 1998, 74: 198–201

    Article  CAS  Google Scholar 

  10. Wang Y, Chen L, Wang Y, Xia Y. Electrochim Acta, 2015, 173: 178–183

    Article  CAS  Google Scholar 

  11. Wang Y, Luo J, Wang C, Xia Y. J Electrochem Soc, 2006, 153: A1425

    Google Scholar 

  12. Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H. Angew Chem Int Ed, 2007, 46: 295–297

    Article  CAS  Google Scholar 

  13. Manickam M, Singh P, Thurgate S, Prince K. J Power Sources, 2006, 158: 646–649

    Article  CAS  Google Scholar 

  14. He P, Liu JL, Cui WJ, Luo JY, Xia YY. Electrochim Acta, 2011, 56: 2351–2357

    Article  CAS  Google Scholar 

  15. Wang Y, Yi J, Xia Y. Adv Energy Mater, 2012, 2: 830–840

    Article  CAS  Google Scholar 

  16. Luo JY, Cui WJ, He P, Xia YY. Nat Chem, 2010, 2: 760–765

    Article  CAS  PubMed  Google Scholar 

  17. Luo JY, Xia YY. Adv Funct Mater, 2007, 17: 3877–3884

    Article  CAS  Google Scholar 

  18. Li W. J Electrochem Soc, 1995, 142: 1742–1746

    Article  CAS  Google Scholar 

  19. Wessells C, Huggins RA, Cui Y. J Power Sources, 2011, 196: 2884–2888

    Article  CAS  Google Scholar 

  20. Wen Y, Chen L, Pang Y, Guo Z, Bin D, Wang Y, Wang C, Xia Y. ACS Appl Mater Interfaces, 2017, 9: 8075–8082

    Article  CAS  PubMed  Google Scholar 

  21. Patoux S, Masquelier C. Chem Mater, 2002, 14: 5057–5068

    Article  CAS  Google Scholar 

  22. Hao Y, Wu C, Cui Y, Xu K, Yuan Z, Zhuang Q. Ionics, 2014, 20: 1079–1085

    Article  CAS  Google Scholar 

  23. Senguttuvan P, Rousse G, Oró-Solé J, Tarascon JM, Palacín MR. J Mater Chem A, 2013, 1: 15284–15289

    Article  CAS  Google Scholar 

  24. Li C, Sun X, Du Q, Zhang H. Solid State Ion, 2013, 249–250: 72–77

    Google Scholar 

  25. Wu W, Shanbhag S, Wise A, Chang J, Rutt A, Whitacre JF. J Electrochem Soc, 2015, 162: A1921–A1926

    Google Scholar 

  26. Zhang H, Zhou Y, Li C, Yang C, Zhu T. J Mater Chem A, 2016, 4: 13390–13394

    Article  CAS  Google Scholar 

  27. Norberg ST, Svensson G, Albertsson J. Acta Crystlogr C Cryst Struct Commun, 2001, 57: 225–227

    Article  CAS  Google Scholar 

  28. Sanz J, Iglesias JE, Soria J, Losilla ER, Aranda MAG, Bruque S. Chem Mater, 1997, 9: 996–1003

    Article  CAS  Google Scholar 

  29. Hu S, Song Y, Yuan S, Liu H, Xu Q, Wang Y, Wang CX, Xia YY. J Power Sources, 2016, 303: 333–339

    Article  CAS  Google Scholar 

  30. Liu J, Conry TE, Song X, Doeff MM, Richardson TJ. Energy Environ Sci, 2011, 4: 885–888

    Article  CAS  Google Scholar 

  31. Rai AK, Gim J, Song J, Mathew V, Anh LT, Kim J. Electrochim Acta, 2012, 75: 247–253

    Article  CAS  Google Scholar 

  32. Shi Z, Wang Q, Ye W, Li Y, Yang Y. Microporous Mesoporous Mater, 2006, 88: 232–237

    Article  CAS  Google Scholar 

  33. Sun Y, Gai L, Zhou Y, Zuo X, Zhou J, Jiang H. CrystEngComm, 2014, 16: 10681–10691

    Article  CAS  Google Scholar 

  34. Dobbelaere T, Mattelaer F, Roy AK, Vereecken P, Detavernier C. J Mater Chem A, 2017, 5: 330–338

    Article  CAS  Google Scholar 

  35. Aravindan V, Reddy MV, Madhavi S, Mhaisalkar SG, Subba Rao GV, Chowdari BVR. J Power Sources, 2011, 196: 8850–8854

    Article  CAS  Google Scholar 

  36. Rai AK, Lim J, Mathew V, Gim J, Kang J, Paul BJ, Kim D, Ahn S, Kim S, Ahn K, Kim J. Electrochem Commun, 2012, 19: 9–12

    Article  CAS  Google Scholar 

  37. Teng D, Yu Y, Li P, Bai X, Yang X. RSC Adv, 2013, 3: 14237–14240

    Article  CAS  Google Scholar 

  38. Sun K, Juarez DA, Huang H, Jung E, Dillon SJ. J Power Sources, 2014, 248: 582–587

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21333002), and the National Key Research and Development Plan (2016YFB0901500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongyao Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Liu, Y., Bin, D. et al. High performance TiP2O7 nanoporous microsphere as anode material for aqueous lithium-ion batteries. Sci. China Chem. 62, 118–125 (2019). https://doi.org/10.1007/s11426-018-9373-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9373-0

Keywords

Navigation