Skip to main content
Log in

A dsDNA-lighted fluorophore for monitoring protein-ligand interaction through binding-mediated DNA protection

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Because of their important roles in cellular functions, life activities, drug screening, and disease treatment, the development of efficient methods for monitoring protein-ligand interaction is essential. In this study, inspired by our previous studies on DNA conformation-selective fluorescent indicators, we developed a new sensing platform for monitoring protein-ligand interaction and detecting protein activity based on binding-mediated DNA protection and the dsDNA-lighted fluorophore, ethyl-4-[3,6-bis (1-methyl-4-vinylpyridium iodine)-9H-carbazol-9-yl)] butanoate (EBCB). The ligand was purposefully linked to the 3ʹ-terminal of a hairpin DNA probe to selectively bind with the target protein and protect the DNA from cleavage by exonuclease III. By virtue of EBCB’s outstanding capacity to discriminate DNA conformation, the protein-ligand interaction could be effectively monitored through a fluorescence change in EBCB. A high fluorescence signal was detected when the hairpin DNA was protected in the presence of the target protein, whereas a much lower signal was observed in the presence of nontarget proteins. Our results demonstrated that the proposed strategy had high potential, such as high selectivity and relatively high sensitivity, for monitoring protein-ligand interaction and detecting protein activity. We believe these results will pave the way for applying dsDNA-lighted fluorophore EBCB as an effective signal transducer for DNA conformation transformation-mediated biochemical sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heal WP, Dang THT, Tate EW. Chem Soc Rev, 2011, 40: 246–257

    Article  CAS  PubMed  Google Scholar 

  2. Bai Y, Luo Q, Liu J. Chem Soc Rev, 2016, 45: 2756–2767

    Article  CAS  PubMed  Google Scholar 

  3. Li D, Lu G, Lei C, Wang Z, Li L, Nie Z, Huang Y, Yao S. Sci China Chem, 2016, 59: 809–815

    Article  CAS  Google Scholar 

  4. Jones S, Thornton JM. Proc Natl Acad Sci USA, 1996, 93: 13–20

    Article  CAS  PubMed  Google Scholar 

  5. Inohara N, Chamaillard M, McDonald C, Nuñez G. Annu Rev Biochem, 2005, 74: 355–383

    Article  CAS  PubMed  Google Scholar 

  6. Stockwell BR. Nature, 2004, 432: 846–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou DM, Wu YD, Liu P, Bai HT, Tang LJ, Yu RQ, Jiang JH. Sci China Chem, 2011, 54: 1277–1283

    Article  CAS  Google Scholar 

  8. Michnick SW, Ear PH, Manderson EN, Remy I, Stefan E. Nat Rev Drug Discov, 2007, 6: 569–582

    Article  CAS  PubMed  Google Scholar 

  9. Zhang T, Wei T, Han Y, Ma H, Samieegohar M, Chen PW, Lian I, Lo YH. AC. Cent Sci, 2016, 2: 834–842

    Article  CAS  Google Scholar 

  10. Freyer MW, Lewis EA. Methods Cell Biol, 2008, 84: 79–113

    Article  CAS  PubMed  Google Scholar 

  11. Cooper MA. Nat Rev Drug Discov, 2002, 1: 515–528

    Article  CAS  PubMed  Google Scholar 

  12. Wear MA, Patterson A, Malone K, Dunsmore C, Turner NJ, Walkinshaw MD. Anal Biochem, 2005, 345: 214–226

    Article  CAS  PubMed  Google Scholar 

  13. Lee CK, Wang YM, Huang LS, Lin S. Micron, 2007, 38: 446–461

    Article  CAS  PubMed  Google Scholar 

  14. Star A, Gabriel JCP, Bradley K, Grüner G. Nano Lett, 2003, 3: 459–463

    Article  CAS  Google Scholar 

  15. Østergaard J, Jensen H, Holm R. Sep Sci, 2009, 32: 1712–1721

    Article  CAS  Google Scholar 

  16. Zhu L, Qing Z, Hou L, Yang S, Zou Z, Cao Z, Yang R. ACS Sens, 2017, 2: 1198–1204

    Article  CAS  PubMed  Google Scholar 

  17. Qing Z, Zhu L, Li X, Yang S, Zou Z, Guo J, Cao Z, Yang R. Environ Sci Technol, 2017, 51: 11884–11890

    Article  CAS  PubMed  Google Scholar 

  18. Qing Z, Hou L, Yang L, Zhu L, Yang S, Zheng J, Yang R. Anal Chem, 2016, 88: 9759–9765

    Article  CAS  PubMed  Google Scholar 

  19. Cash KJ, Ricci F, Plaxco KW. Am Chem Soc, 2009, 131: 6955–6957

    Article  CAS  Google Scholar 

  20. Wu Z, Wang H, Guo M, Tang LJ, Yu RQ, Jiang JH. Anal Chem, 2011, 83: 3104–3111

    Article  CAS  PubMed  Google Scholar 

  21. Mohamma. Danesh N, Ramezani M, Sarreshtehdar Emrani A, Abnous K, Taghdisi SM. Biosens Bioelectron, 2016, 75: 123–128

    Article  CAS  Google Scholar 

  22. Du Y, Dong S. Anal Chem, 2016, 89: 189–215

    Article  CAS  PubMed  Google Scholar 

  23. Tang Q, Wang N, Zhou F, Deng T, Zhang S, Li J, Yang R, Zhong W, Tan W. Chem Commun, 2015, 51: 16810–16812

    Article  CAS  Google Scholar 

  24. Perry LJ, Wetzel R. Science, 1984, 226: 555–557

    Article  CAS  PubMed  Google Scholar 

  25. Bota DA, Davies KJA. Nat Cell Biol, 2002, 4: 674–680

    Article  CAS  Google Scholar 

  26. Lesniak A, Campbell A, Monopoli MP, Lynch I, Salvati A, Dawson KA. Biomaterials, 2010, 31: 9511–9518

    Article  CAS  PubMed  Google Scholar 

  27. Lingwood D, Simons K. Science, 2010, 327: 46–50

    Article  CAS  PubMed  Google Scholar 

  28. Lee CC, Avalos AM, Ploegh HL. Nat Rev Immunol, 2012, 12: 168–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Czabotar PE, Lessene G, Strasser A, Adams JM. Nat Rev Mol Cell Biol, 2014, 15: 49–63

    Article  CAS  Google Scholar 

  30. Xu Y, Shen J, Luo X, Shen X, Chen K, Jiang H. Sci China Ser BChem, 2004, 47: 355–366

    Article  CAS  Google Scholar 

  31. Wang M, Li F, Jiang B, Xu J, Li S, Xiang Y, Yuan R. Sci China Chem, 2016, 59: 770–775

    Article  CAS  Google Scholar 

  32. Wang B, Feng W, Chai Z, Zhao Y. Sci China Chem, 2015, 58: 768–779

    Article  CAS  Google Scholar 

  33. Shevelev IV, Hübscher U. Nat Rev Mol Cell Biol, 2002, 3: 364–376

    Article  CAS  PubMed  Google Scholar 

  34. Hu P, Zhu C, Jin L, Dong S. Biosens Bioelectron, 2012, 34: 83–87

    Article  CAS  PubMed  Google Scholar 

  35. Rothschild LJ, Mancinelli RL. Nature, 2001, 409: 1092–1101

    Article  CAS  Google Scholar 

  36. Nagajyoti PC, Lee KD, Sreekanth TVM. Environ Chem Lett, 2010, 8: 199–216

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21605008, 21735001, 21575018, 21505006) and the Hunan Provincial Natural Science Foundation (2016JJ3001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihe Qing or Ronghua Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qing, Z., Zhu, L., Hou, L. et al. A dsDNA-lighted fluorophore for monitoring protein-ligand interaction through binding-mediated DNA protection. Sci. China Chem. 61, 1630–1636 (2018). https://doi.org/10.1007/s11426-018-9349-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9349-9

Keywords

Navigation