Science China Chemistry

, Volume 61, Issue 10, pp 1307–1313 | Cite as

A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss

  • Bin Kan
  • Huanran Feng
  • Huifeng Yao
  • Meijia Chang
  • Xiangjian Wan
  • Chenxi Li
  • Jianhui HouEmail author
  • Yongsheng ChenEmail author


A new acceptor-donor-acceptor (A-D-A) type small-molecule acceptor NCBDT-4Cl using chlorinated end groups is reported. This new-designed molecule demonstrates wide and efficient absorption ability in the range of 600–900 nm with a narrow optical bandgap of 1.40 eV. The device based on PBDB-T-SF:NCBDT-4Cl shows a power conversion efficiency (PCE) of 13.1% without any post-treatment, which represents the best result for all as-cast organic solar cells (OSCs) to date. After device optimizations, the PCE was further enhanced to over 14% with a high short-circuit current density (Jsc) of 22.35 mA cm−2 and a fill-factor (FF) of 74.3%. The improved performance was attributed to the more efficient photo-electron conversion process in the optimal device. To our knowledge, this outstanding efficiency of 14.1% with an energy loss as low as 0.55 eV is among the best results for all single-junction OSCs.


small-molecule acceptor low-bandgap chlorinated high performance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (91633301, 51773095), MoST of China (2014CB643502), Tianjin city (17JCJQJC44500, 17CZDJC31100) and 111 Project (B12015). The authors also thank beamline BL14B1 (Shanghai Synchrotron Radiation Facility) for providing the beam time.

Supplementary material

11426_2018_9334_MOESM1_ESM.pdf (380 kb)
A Chlorinated Low-Bandgap Small-Molecule Acceptor for Organic Solar Cells With 14.1% Efficiency and Low Energy Loss


  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791CrossRefGoogle Scholar
  2. 2.
    Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161CrossRefGoogle Scholar
  3. 3.
    Dou L, Liu Y, Hong Z, Li G, Yang Y. Chem Rev, 2015, 115: 12633–12665CrossRefPubMedGoogle Scholar
  4. 4.
    McAfee SM, Topple JM, Hill IG, Welch GC. J Mater Chem A, 2015, 3: 16393–16408CrossRefGoogle Scholar
  5. 5.
    Nielsen CB, Holliday S, Chen HY, Cryer SJ, McCulloch I. Acc Chem Res, 2015, 48: 2803–2812CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Li S, Liu W, Li CZ, Shi M, Chen H. Small, 2017, 13: 1701120CrossRefGoogle Scholar
  7. 7.
    Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119–128CrossRefPubMedGoogle Scholar
  8. 8.
    Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011–15018CrossRefPubMedGoogle Scholar
  9. 9.
    Liu J, Chen S, Qian D, Gautam B, Yang G, Zhao J, Bergqvist J, Zhang F, Ma W, Ade H, Inganäs O, Gundogdu K, Gao F, Yan H. Nat Energy, 2016, 1: 16089CrossRefGoogle Scholar
  10. 10.
    Cheng P, Zhang M, Lau TK, Wu Y, Jia B, Wang J, Yan C, Qin M, Lu X, Zhan X. Adv Mater, 2017, 29: 1605216CrossRefGoogle Scholar
  11. 11.
    Kan B, Zhang J, Liu F, Wan X, Li C, Ke X, Wang Y, Feng H, Zhang Y, Long G, Friend RH, Bakulin AA, Chen Y. Adv Mater, 2018, 30: 1704904CrossRefGoogle Scholar
  12. 12.
    Fei Z, Eisner FD, Jiao X, Azzouzi M, Röhr JA, Han Y, Shahid M, Chesman ASR, Easton CD, McNeill CR, Anthopoulos TD, Nelson J, Heeney M. Adv Mater, 2018, 30: 1705209CrossRefGoogle Scholar
  13. 13.
    Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J. Chin J Chem, 2018, 36: 491–494CrossRefGoogle Scholar
  14. 14.
    Xiao Z, Jia X, Ding L. Sci Bull, 2017, 62: 1562–1564CrossRefGoogle Scholar
  15. 15.
    Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868CrossRefGoogle Scholar
  16. 16.
    Cui Y, Yao HF, Yang CY, Zhang SQ, Hou JH. Acta Polym Sin, 2018, 2: 223–230Google Scholar
  17. 17.
    Zhang Y, Yao H, Zhang S, Qin Y, Zhang J, Yang L, Li W, Wei Z, Gao F, Hou J. Sci China Chem, 2018, 61: doi: 10.1007/s11426-018-9260-2Google Scholar
  18. 18.
    Zhang H, Yao H, Hou J, Zhu J, Zhang J, Li W, Yu R, Gao B, Zhang S, Hou J. Adv Mater, 2018, 29: 1800613CrossRefGoogle Scholar
  19. 19.
    Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Bin H, Zhong L, Zhang ZG, Gao L, Yang Y, Xue L, Zhang J, Zhang Z, Li Y. Sci China Chem, 2016, 59: 1317–1322CrossRefGoogle Scholar
  21. 21.
    Zhang H, Liu Y, Sun Y, Li M, Ni W, Zhang Q, Wan X, Chen Y. Sci China Chem, 2017, 60: 366–369CrossRefGoogle Scholar
  22. 22.
    Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363–369CrossRefPubMedGoogle Scholar
  23. 23.
    Xu SJ, Zhou Z, Liu W, Zhang Z, Liu F, Yan H, Zhu X. Adv Mater, 2017, 29: 1704510CrossRefGoogle Scholar
  24. 24.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  25. 25.
    Liu F, Zhou Z, Zhang C, Vergote T, Fan H, Liu F, Zhu X. J Am Chem Soc, 2016, 138: 15523–15526CrossRefPubMedGoogle Scholar
  26. 26.
    Yao H, Chen Y, Qin Y, Yu R, Cui Y, Yang B, Li S, Zhang K, Hou J. Adv Mater, 2016, 28: 8283–8287CrossRefPubMedGoogle Scholar
  27. 27.
    Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343CrossRefPubMedGoogle Scholar
  28. 28.
    Shi X, Zuo L, Jo SB, Gao K, Lin F, Liu F, Jen AKY. Chem Mater, 2017, 29: 8369–8376CrossRefGoogle Scholar
  29. 29.
    Yao H, Cui Y, Yu R, Gao B, Zhang H, Hou J. Angew Chem Int Ed, 2017, 56: 3045–3049CrossRefGoogle Scholar
  30. 30.
    Cheng P, Li G, Zhan X, Yang Y. Nat Photon, 2018, 12: 131–142CrossRefGoogle Scholar
  31. 31.
    Yang F, Li C, Lai W, Zhang A, Huang H, Li W. Mater Chem Front, 2017, 1: 1389–1395CrossRefGoogle Scholar
  32. 32.
    Qiu N, Zhang H, Wan X, Li C, Ke X, Feng H, Kan B, Zhang H, Zhang Q, Lu Y, Chen Y. Adv Mater, 2017, 29: 1604964CrossRefGoogle Scholar
  33. 33.
    Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447–3507CrossRefPubMedGoogle Scholar
  34. 34.
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefPubMedGoogle Scholar
  35. 35.
    Li S, Ye L, Zhao W, Zhang S, Mukherjee S, Ade H, Hou J. Adv Mater, 2016, 28: 9423–9429CrossRefPubMedGoogle Scholar
  36. 36.
    Li S, Ye L, Zhao W, Liu X, Zhu J, Ade H, Hou J. Adv Mater, 2017, 29: 1704051CrossRefGoogle Scholar
  37. 37.
    Yi YQQ, Feng H, Chang M, Zhang H, Wan X, Li C, Chen Y. J Mater Chem A, 2017, 5: 17204–17210CrossRefGoogle Scholar
  38. 38.
    Yan C, Barlow S, Wang Z, Yan H, Jen AKY, Marder SR, Zhan X. Nat Rev Mater, 2018, 3: 18003CrossRefGoogle Scholar
  39. 39.
    Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139: 4929–4934CrossRefPubMedGoogle Scholar
  40. 40.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151CrossRefPubMedGoogle Scholar
  41. 41.
    Zheng Z, Awartani OM, Gautam B, Liu D, Qin Y, Li W, Bataller A, Gundogdu K, Ade H, Hou J. Adv Mater, 2017, 29: 1604241CrossRefGoogle Scholar
  42. 42.
    Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966–1973CrossRefGoogle Scholar
  43. 43.
    Blom P, Mihailetchi V, Koster L, Markov D. Adv Mater, 2007, 19: 1551–1566CrossRefGoogle Scholar
  44. 44.
    Müller-Buschbaum P. Adv Mater, 2014, 26: 7692–7709CrossRefPubMedGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Bin Kan
    • 1
  • Huanran Feng
    • 1
  • Huifeng Yao
    • 2
  • Meijia Chang
    • 1
  • Xiangjian Wan
    • 1
  • Chenxi Li
    • 1
  • Jianhui Hou
    • 2
    Email author
  • Yongsheng Chen
    • 1
    Email author
  1. 1.State Key Laboratory and Institute of Elemento-Organic Chemistry, The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of ChemistryNankai UniversityTianjinChina
  2. 2.State Key Laboratory of Polymer Physics and Chemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina

Personalised recommendations