Science China Chemistry

, Volume 61, Issue 9, pp 1143–1150 | Cite as

Highly chemiluminescent magnetic mesoporous carbon composites Fe3O4@void@C with yolk-shell structure

  • Rui Yang
  • Shaomin Liu
  • Hua CuiEmail author


In this work, highly chemiluminescent magnetic mesoporous carbon with yolk-shell structure was synthesized by encapsulating N-(4-aminobutyl)-N-ethylisoluminol (ABEI) and Co2+ into the magnetic mesoporous carbon composites (Co2+-ABEI-Fe3O4@ void@C). The synthetic Co2+-ABEI-Fe3O4@void@C showed a good magnetic separation property, which could remove residual ABEI molecules and Co2+ in less than 3 min under an external magnet. Moreover, the synthetic Co2+-ABEI-Fe3O4@void@C demonstrated good chemiluminescence (CL) property and good stability when interacted with alkaline H2O2 solution. The CL intensity of such Co2+-ABEI-Fe3O4@void@C was about 120 times higher than that of ABEI-Fe3O4@void@C. The Co2+-ABEIFe3O4@ void@C also exhibited good electrochemiluminescence (ECL) property in alkaline solution. The outstanding CL/ECL performance of the Co2+-ABEI-Fe3O4@void@C was attributed to the Co2+ immobilized in the Co2+-ABEI-Fe3O4@void@C, which catalyzed the decomposition of H2O2 to generate O2•− and HO, expediting the CL/ECL reaction. The synthetic Co2+-ABEI-Fe3O4@void@C may be of great application for the development of new methodologies in bioanalysis.


N-(4-aminobutyl)-N-ethylisoluminol (ABEI) chemiluminescence (CL) yolk-shell magnetic mesoporous carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21475120, 21527807) and the National Key Research and Development Program of China (2016YFA0201300).

Supplementary material

11426_2018_9329_MOESM1_ESM.pdf (919 kb)
Highly chemiluminescent magnetic mesoporous carbon composites Fe3O4@void@C with yolk-shell structure


  1. 1.
    Gu W, Deng X, Gu X, Jia X, Lou B, Zhang X, Li J, Wang E. Anal Chem, 2015, 87: 1876–1881CrossRefPubMedGoogle Scholar
  2. 2.
    Justino CIL, Gomes AR, Freitas AC, Duarte AC, Rocha-Santos TAP. TrAC Trends Anal Chem, 2017, 91: 53–66CrossRefGoogle Scholar
  3. 3.
    Li LL, Liu KP, Yang GH, Wang CM, Zhang JR, Zhu JJ. Adv Funct Mater, 2011, 21: 869–878CrossRefGoogle Scholar
  4. 4.
    Urmann K, Walter JG, Scheper T, Segal E. Anal Chem, 2015, 87: 1999–2006CrossRefPubMedGoogle Scholar
  5. 5.
    Wei Y, Sun H, Li J, Zhang Y, Li Y, Lin J, Wang T, Zhou M. J Electroanal Chem, 2017, 795: 123–129CrossRefGoogle Scholar
  6. 6.
    Du D, Zou Z, Shin Y, Wang J, Wu H, Engelhard MH, Liu J, Aksay IA, Lin Y. Anal Chem, 2010, 82: 2989–2995CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Han Z, Li F, Shu J, Gao L, Liu X, Cui H. ACS Appl Mater Interfaces, 2016, 8: 17454–17460CrossRefPubMedGoogle Scholar
  8. 8.
    Dong S, Yuan Z, Zhang L, Lin Y, Lu C. Anal Chem, 2017, 89: 12520–12526CrossRefPubMedGoogle Scholar
  9. 9.
    Qin Y, Liu N, Li H, Sun Y, Hu L, Zhao S, Han D, Liu Y, Kang Z, Niu L. J Phys Chem C, 2017, 121: 27546–27554CrossRefGoogle Scholar
  10. 10.
    Vázquez-González M, Liao WC, Cazelles R, Wang S, Yu X, Gutkin V, Willner I. ACS Nano, 2017, 11: 3247–3253CrossRefPubMedGoogle Scholar
  11. 11.
    Ismail NS, Le QH, Hasan Q, Yoshikawa H, Saito M, Tamiya E. Electrochim Acta, 2015, 180: 409–418CrossRefGoogle Scholar
  12. 12.
    Wang J, Zhong W, Liu X, Yang T, Li F, Li Q, Cheng W, Gao C, Jiang Z, Jiang J, Cui H. Anal Chem, 2017, 89: 13518–13523CrossRefPubMedGoogle Scholar
  13. 13.
    Shen W, Yu Y, Shu J, Cui H. Chem Commun, 2012, 48: 2894–2896CrossRefGoogle Scholar
  14. 14.
    Xu S, Liu Y, Wang T, Li J. Anal Chem, 2011, 83: 3817–3823CrossRefPubMedGoogle Scholar
  15. 15.
    Ding SN, Shan D, Cosnier S, Le Goff A. Chem Eur J, 2012, 18: 11564–11568CrossRefPubMedGoogle Scholar
  16. 16.
    Haghighi B, Tavakoli A, Bozorgzadeh S. J Electroanal Chem, 2016, 762: 80–86CrossRefGoogle Scholar
  17. 17.
    Zhang S, Zang L, Zhang X, Dai H, Xu G, Zhang Q, Yang C, Lin Y. Electrochim Acta, 2016, 196: 67–74CrossRefGoogle Scholar
  18. 18.
    Lee JS, Joung HA, Kim MG, Park CB. ACS Nano, 2012, 6: 2978–2983CrossRefPubMedGoogle Scholar
  19. 19.
    Liu X, Han Z, Li F, Gao L, Liang G, Cui H. ACS Appl Mater Interfaces, 2015, 7: 18283–18291CrossRefGoogle Scholar
  20. 20.
    Li G, Yu X, Liu D, Liu X, Li F, Cui H. Anal Chem, 2015, 87: 10976–10981CrossRefPubMedGoogle Scholar
  21. 21.
    Li J, Cao Y, Hinman SS, McKeating KS, Guan Y, Hu X, Cheng Q, Yang Z. Biosens Bioelectron, 2018, 100: 304–311CrossRefPubMedGoogle Scholar
  22. 22.
    Afsharan H, Khalilzadeh B, Tajalli H, Mollabashi M, Navaeipour F, Rashidi MR. Electrochim Acta, 2016, 188: 153–164CrossRefGoogle Scholar
  23. 23.
    Liu J, Yang HQ, Kleitz F, Chen ZG, Yang T, Strounina E, Lu GQM, Qiao SZ. Adv Funct Mater, 2012, 22: 591–599CrossRefGoogle Scholar
  24. 24.
    Yue Q, Li J, Luo W, Zhang Y, Elzatahry AA, Wang X, Wang C, Li W, Cheng X, Alghamdi A, Abdullah AM, Deng Y, Zhao D. J Am Chem Soc, 2015, 137: 13282–13289CrossRefPubMedGoogle Scholar
  25. 25.
    Wu XJ, Xu D. Adv Mater, 2010, 22: 1516–1520CrossRefPubMedGoogle Scholar
  26. 26.
    Liu J, Qiao S, Budi Hartono S, Lu G. Angew Chem, 2010, 122: 5101–5105CrossRefGoogle Scholar
  27. 27.
    Lin CH, Liu X, Wu SH, Liu KH, Mou CY. J Phys Chem Lett, 2011, 2: 2984–2988CrossRefGoogle Scholar
  28. 28.
    Liu C, Li J, Qi J, Wang J, Luo R, Shen J, Sun X, Han W, Wang L. ACS Appl Mater Interfaces, 2014, 6: 13167–13173CrossRefPubMedGoogle Scholar
  29. 29.
    Rai P, Yoon JW, Jeong HM, Hwang SJ, Kwak CH, Lee JH. Nanoscale, 2014, 6: 8292–8299CrossRefPubMedGoogle Scholar
  30. 30.
    Wang Y, Gu H. Adv Mater, 2015, 27: 576–585CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Y, Chen H, Zeng D, Tian Y, Chen F, Feng J, Shi J. ACS Nano, 2010, 4: 6001–6013CrossRefPubMedGoogle Scholar
  32. 32.
    Lee J, Park JC, Song H. Adv Mater, 2008, 20: 1523–1528CrossRefGoogle Scholar
  33. 33.
    Kuo CH, Tang Y, Chou LY, Sneed BT, Brodsky CN, Zhao Z, Tsung CK. J Am Chem Soc, 2012, 134: 14345–14348CrossRefPubMedGoogle Scholar
  34. 34.
    Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F. Phys Chem Chem Phys, 2011, 13: 2449–2456CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang Z, Zhu C, Wan W, Qian K, Xie J. J Mater Chem A, 2016, 4: 1806–1818CrossRefGoogle Scholar
  36. 36.
    Li X, Gai F, Guan B, Zhang Y, Liu Y, Huo Q. J Mater Chem A, 2015, 3: 3988–3994CrossRefGoogle Scholar
  37. 37.
    Shao Y, Zhou L, Bao C, Ma J. Carbon, 2015, 89: 378–391CrossRefGoogle Scholar
  38. 38.
    Liu N, Wu H, McDowell MT, Yao Y, Wang C, Cui Y. Nano Lett, 2012, 12: 3315–3321CrossRefPubMedGoogle Scholar
  39. 39.
    Wei Seh Z, Li W, Cha JJ, Zheng G, Yang Y, McDowell MT, Hsu PC, Cui Y. Nat Commun, 2013, 4: 1331CrossRefPubMedGoogle Scholar
  40. 40.
    Sindoro M, Granick S. J Am Chem Soc, 2014, 136: 13471–13473CrossRefPubMedGoogle Scholar
  41. 41.
    Yue Q, Zhang Y, Wang C, Wang X, Sun Z, Hou XF, Zhao D, Deng Y. J Mater Chem A, 2015, 3: 4586–4594CrossRefGoogle Scholar
  42. 42.
    Yang R, Liu Y, Yan X, Liu S, Zheng H. J Mater Chem A, 2016, 4: 9807–9815CrossRefGoogle Scholar
  43. 43.
    Gierszal KP, Jaroniec M. J Am Chem Soc, 2006, 128: 10026–10027CrossRefPubMedGoogle Scholar
  44. 44.
    Ko TH, Kuo WS, Chang YH. J Appl Polym Sci, 2001, 81: 1084–1089CrossRefGoogle Scholar
  45. 45.
    Centeno TA, Vilas JL, Fuertes AB. J Membrane Sci, 2004, 228: 45–54CrossRefGoogle Scholar
  46. 46.
    Liu Y, Shen W, Li Q, Shu J, Gao L, Ma M, Wang W, Cui H. Nat Commun, 2017, 8: 1003CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Shu J, Wang W, Cui H. Chem Commun, 2015, 51: 11366–11369CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations