Skip to main content
Log in

Controlling disorder in host lattice by hetero-valence ion doping to manipulate luminescence in spinel solid solution phosphors

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Phosphor materials have been rapidly developed in the past decades. Developing phosphors with desired properties including strong luminescence intensity and long lifetime has attracted widespread attention. Herein, we show that hetero-valence ion doping can serve as a potent strategy to manipulate luminescence in persistent phosphors by controlling disorder in the host lattice. Specifically, spinel phosphor Zn(Ga1−xZnx)(Ga1−xGex)O4:Cr is developed by doping ZnGa2O4:Cr with tetravalent Ge4+. Compared to the original ZnGa2O4:Cr, the doped Zn(Ga1−xZnx)(Ga1−xGex)O4:Cr possesses significantly enhanced persistent luminescence intensity and prolonged decay time. Rietveld refinements show that Ge4+ enters into octahedral sites to substitute Ga3+, which leads to the co-substitution of Ga3+ by Zn2+ for charge compensation. The hetero-valence substitution of Ga3+ by Ge4+ and Zn2+ enriches the charged defects in Zn(Ga1−xZnx)(Ga1−xGex)O4:Cr, making it possible to trap large amounts of charge carriers within the defects during excitation. Electron paramagnetic resonance measurement further confirms that the amount of Cr3+ neighboring charged defects increases with Ge4+ doping. Thus charge carriers released from defects can readily combine with the neighboring Cr3+ to produce bright persistent luminescence after excitation ceases. The hetero-valence ion doping strategy can further be employed to develop many other phosphors and contributes to lighting, photocatalysis and bioimaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhu X, Su Q, Feng W, Li F. Chem Soc Rev, 2017, 46: 1025–1039

    Article  CAS  PubMed  Google Scholar 

  2. Wu BY, Wang HF, Chen JT, Yan XP. J Am Chem Soc, 2011, 133: 686–688

    Article  CAS  PubMed  Google Scholar 

  3. Maldiney T, Bessière A, Seguin J, Teston E, Sharma SK, Viana B, Bos AJJ, Dorenbos P, Bessodes M, Gourier D, Scherman D, Richard C. Nat Mater, 2014, 13: 418–426

    Article  CAS  PubMed  Google Scholar 

  4. Wang W, Cheng Z, Yang P, Hou Z, Li C, Li G, Dai Y, Lin J. Adv Funct Mater, 2011, 21: 456–463

    Article  CAS  Google Scholar 

  5. Bielec P, Schnick W. Angew Chem Int Ed, 2017, 56: 4810–4813

    Article  CAS  Google Scholar 

  6. Lin CC, Tsai YT, Johnston HE, Fang MH, Yu F, Zhou W, Whitfield P, Li Y, Wang J, Liu RS, Attfield JP. J Am Chem Soc, 2017, 139: 11766–11770

    Article  CAS  PubMed  Google Scholar 

  7. Zhou J, Liu Q, Feng W, Sun Y, Li F. Chem Rev, 2015, 115: 395–465

    Article  CAS  PubMed  Google Scholar 

  8. Dong H, Sun LD, Wang YF, Ke J, Si R, Xiao JW, Lyu GM, Shi S, Yan CH. J Am Chem Soc, 2015, 137: 6569–6576

    Article  CAS  PubMed  Google Scholar 

  9. Huang L, Zhao Y, Zhang H, Huang K, Yang J, Han G. Angew Chem Int Ed, 2017, 56: 14400–14404

    Article  CAS  Google Scholar 

  10. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S. Science, 2005, 307: 538–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wu P, Yan XP. Chem Soc Rev, 2013, 42: 5489–5521

    Article  CAS  PubMed  Google Scholar 

  12. Xu G, Zeng S, Zhang B, Swihart MT, Yong KT, Prasad PN. Chem Rev, 2016, 116: 12234–12327

    Article  CAS  PubMed  Google Scholar 

  13. Wei Y, Deng X, Xie Z, Cai X, Liang S, Ma P, Hou Z, Cheng Z, Lin J. Adv Funct Mater, 2017, 27: 1703535

    Article  CAS  Google Scholar 

  14. Zou S, Liu Y, Li J, Liu C, Feng R, Jiang F, Li Y, Song J, Zeng H, Hong M, Chen X. J Am Chem Soc, 2017, 139: 11443–11450

    Article  CAS  PubMed  Google Scholar 

  15. Wu SQ, Yang CX, Yan XP. Adv Funct Mater, 2017, 27: 1604992

    Article  CAS  Google Scholar 

  16. Li Z, Zhang Y, Wu X, Huang L, Li D, Fan W, Han G. J Am Chem Soc, 2015, 137: 5304–5307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang B. Inorg Chem, 2015, 54: 11423–11440

    Article  CAS  PubMed  Google Scholar 

  18. Huang B, Sun M. Phys Chem Chem Phys, 2017, 19: 9457–9469

    Article  CAS  PubMed  Google Scholar 

  19. Li Z, Zhang Y, Wu X, Wu X, Maudgal R, Zhang H, Han G. Adv Sci, 2015, 2: 1500001

    Article  CAS  Google Scholar 

  20. Song L, Li PP, Yang W, Lin XH, Liang H, Chen XF, Liu G, Li J, Yang HH. Adv Funct Mater, 2018, 28: 1707496

    Article  CAS  Google Scholar 

  21. Zhou Z, Zheng W, Kong J, Liu Y, Huang P, Zhou S, Chen Z, Shi J, Chen X. Nanoscale, 2017, 9: 6846–6853

    Article  CAS  PubMed  Google Scholar 

  22. Wang J, Ma Q, Hu XX, Liu H, Zheng W, Chen X, Yuan Q, Tan W. ACS Nano, 2017, 11: 8010–8017

    Article  CAS  PubMed  Google Scholar 

  23. Song L, Lin XH, Song XR, Chen S, Chen XF, Li J, Yang HH. Nanoscale, 2017, 9: 2718–2722

    Article  CAS  PubMed  Google Scholar 

  24. Gai S, Li C, Yang P, Lin J. Chem Rev, 2014, 114: 2343–2389

    Article  CAS  PubMed  Google Scholar 

  25. Qin X, Liu X, Huang W, Bettinelli M, Liu X. Chem Rev, 2017, 117: 4488–4527

    Article  CAS  PubMed  Google Scholar 

  26. Lécuyer T, Teston E, Ramirez-Garcia G, Maldiney T, Viana B, Seguin J, Mignet N, Scherman D, Richard C. Theranostics, 2016, 6: 2488–2523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Ma Q, Wang Y, Shen H, Yuan Q. Nanoscale, 2017, 9: 6204–6218

    Article  CAS  PubMed  Google Scholar 

  28. Xia Z, Ma C, Molokeev MS, Liu Q, Rickert K, Poeppelmeier KR. J Am Chem Soc, 2015, 137: 12494–12497

    Article  CAS  PubMed  Google Scholar 

  29. Punjabi A, Wu X, Tokatli-Apollon A, El-Rifai M, Lee H, Zhang Y, Wang C, Liu Z, Chan EM, Duan C, Han G. ACS Nano, 2014, 8: 10621–10630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shang M, Li C, Lin J. Chem Soc Rev, 2014, 43: 1372–1386

    Article  CAS  PubMed  Google Scholar 

  31. Danielson E, Devenney M, Giaquinta DM, Golden JH, Haushalter RC, McFarland EW, Poojary DM, Reaves CM, Weinberg WH, Wu XD. Science, 1998, 279: 837–839

    Article  CAS  PubMed  Google Scholar 

  32. Park WB, Singh SP, Sohn KS. J Am Chem Soc, 2014, 136: 2363–2373

    Article  CAS  PubMed  Google Scholar 

  33. Han S, Qin X, An Z, Zhu Y, Liang L, Han Y, Huang W, Liu X. Nat Commun, 2016, 7: 13059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tsai YT, Chiang CY, Zhou W, Lee JF, Sheu HS, Liu RS. J Am Chem Soc, 2015, 137: 8936–8939

    Article  CAS  PubMed  Google Scholar 

  35. De Trizio L, Manna L. Chem Rev, 2016, 116: 10852–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen D, Wang Y. Nanoscale, 2013, 5: 4621–4637

    Article  CAS  PubMed  Google Scholar 

  37. Dong H, Sun LD, Feng W, Gu Y, Li F, Yan CH. ACS Nano, 2017, 11: 3289–3297

    Article  CAS  PubMed  Google Scholar 

  38. Huang B, Peng D, Pan C. Phys Chem Chem Phys, 2017, 19: 1190–1208

    Article  CAS  PubMed  Google Scholar 

  39. Deng R, Qin F, Chen R, Huang W, Hong M, Liu X. Nat Nanotech, 2015, 10: 237–242

    Article  CAS  Google Scholar 

  40. Shen S, Wang Q. Chem Mater, 2013, 25: 1166–1178

    Article  CAS  Google Scholar 

  41. Liu Y, Zhang X, Hao Z, Wang X, Zhang J. Chem Commun, 2011, 47: 10677–10679

    Article  CAS  Google Scholar 

  42. He H, Zhang Y, Pan Q, Wu G, Dong G, Qiu J. J Mater Chem C, 2015, 3: 5419–5429

    Article  CAS  Google Scholar 

  43. Liu J, Lian H, Shi C. Opt Mater, 2007, 29: 1591–1594

    Article  CAS  Google Scholar 

  44. Zheng W, Zhou S, Chen Z, Hu P, Liu Y, Tu D, Zhu H, Li R, Huang M, Chen X. Angew Chem Int Ed, 2013, 52: 6671–6676

    Article  CAS  Google Scholar 

  45. Dou Q, Zhang Y. Langmuir, 2011, 27: 13236–13241

    Article  CAS  PubMed  Google Scholar 

  46. Abdukayum A, Chen JT, Zhao Q, Yan XP. J Am Chem Soc, 2013, 135: 14125–14133

    Article  CAS  PubMed  Google Scholar 

  47. Gourier D, Bessière A, Sharma SK, Binet L, Viana B, Basavaraju N, Priolkar KR. J Phys Chem Solids, 2014, 75: 826–837

    Article  CAS  Google Scholar 

  48. Huang B. Phys Chem Chem Phys, 2016, 18: 25946–25974

    Article  CAS  PubMed  Google Scholar 

  49. Manual U, TOPAS V. General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe:, 2000

    Google Scholar 

  50. Hill RJ, Craig JR, Gibbs GV. Phys Chem Miner, 1979, 4: 317–339

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0208000), the National Natural Science Foundation of China (21675120, 21325104), and the CAS/SAFEA International Partnership Program for Creative Research Teams. We sincerely thank Prof. Zhenxing Wang from Huazhong University of Science and Technology for his assistance in EPR simulation. The EPR simulation is conducted with the SPIN developed by Andrew Ozarowski in the National High Magnetic Field Laboratory, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Yuan.

Electronic supplementary material

11426_2018_9311_MOESM1_ESM.docx

Controlling Disorder in Host Lattice by Hetero-valence Ion Doping to Manipulate Luminescence in Spinel Solid Solution Phosphors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Q., Wang, J., Zheng, W. et al. Controlling disorder in host lattice by hetero-valence ion doping to manipulate luminescence in spinel solid solution phosphors. Sci. China Chem. 61, 1624–1629 (2018). https://doi.org/10.1007/s11426-018-9311-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9311-0

Keywords

Navigation