Skip to main content
Log in

X-ray scintillation in lead-free double perovskite crystals

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Metal halide perovskites have shown great performance for various applications, including solar cells, light emitting diodes, and radiation detectors, but they still suffer from the toxicity of lead and instability. Here we report the use of lanthanide series as trivalent metals to obtain low toxicity and highly stable double perovskites (Cs2NaLnCl6, Ln=Tb or Eu) with high scintillation light yield. The crystals exhibit typical f-f transitions of lanthanide cations, while Cs2NaTbCl6 exhibits strong green photoluminescence, and Cs2NaEuCl6 exhibits red photoluminescence. Under X-ray radiations, the light yield of Cs2NaTbCl6 reaches 46600 photons MeV−1, much higher than that of the commercially used (Lu,Y)2SiO5:Ce3+ crystals (LYSO, 28500 photons MeV−1), and previously reported lead-based perovskites (14000 photons MeV−1). As a new member of lead-free perovskites, lanthanide-based double perovskites open up a new route toward radiation detections and potential medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weber MJ. Lumin 2002, 100: 35–45

    Article  CAS  Google Scholar 

  2. van Eijk CWE. Phys Med Biol, 2002, 47: R85–R106

    Article  PubMed  Google Scholar 

  3. Kinahan PE, Hasegawa BH, Beyer T. Semin Nucl Med 2003, 33: 166–179

    Article  Google Scholar 

  4. Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin WJ, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Nat Photon 2017, 11: 726–732

    Article  CAS  Google Scholar 

  5. Antonuk LE, El-Mohri Y, Siewerdsen JH, Yorkston J, Huang W, Scarpine VE, Street RA. Med Phys 1997, 24: 51–70

    Article  CAS  PubMed  Google Scholar 

  6. Wei H, Fang Y, Mulligan P, Chuirazzi W, Fang HH, Wang C, Ecker BR, Gao Y, Loi MA, Cao L, Huang J. Nat Photon 2016, 10: 333–339

    Article  CAS  Google Scholar 

  7. Kim YC, Kim KH, Son DY, Jeong DN, Seo JY, Choi YS, Han IT, Lee SY, Park NG. Nature 2017, 550: 87–91

    Article  CAS  PubMed  Google Scholar 

  8. Wei W, Zhang Y, Xu Q, Wei H, Fang Y, Wang Q, Deng Y, Li T, Gruverman A, Cao L, Huang J. Nat Photon 2017, 11: 315–321

    Article  CAS  Google Scholar 

  9. Yuan H, Debroye E, Janssen K, Naiki H, Steuwe C, Lu G, Moris M, Orgiu E, Uji-I H, Schryver F, Samorì P, Hofkens J, Roeffaers M. J Phys Chem Lett 2016, 7: 561–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lignos I, Stavrakis S, Nedelcu G, Protesescu L, de Mello AJ, Kovalenko MV. Nano Lett 2016, 16: 1869–1877

    Article  CAS  PubMed  Google Scholar 

  11. Kawano N, Koshimizu M, Okada G, Fujimoto Y, Kawaguchi N, Yanagida T, Asai K. Sci Rep 2017, 7: 14754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Baryshevsky VG, Korzhik MV, Minkov BI, Smirnova SA, Fyodorov AA, Dorenbos P, van Eijk CWE. J Phys-Condens Matter 1993, 5: 7893–7902

    Article  CAS  Google Scholar 

  13. Holl I, Lorenz E, Mageras G. IEES Trans Nucl Sci 1988, 35: 105–109

    Article  CAS  Google Scholar 

  14. Seferlis Ι. Investigatoin and imaging characteristics of a CMOS sensor based digital detector coupled to a red emitting fluorescent screen. Dissertation for the Master Degree. Patras: University of Patras 2013

    Google Scholar 

  15. Slavney AH, Hu T, Lindenberg AM, Karunadasa HI. Am Chem Soc 2016, 138: 2138–2141

    Article  CAS  Google Scholar 

  16. Luo J, Li S, Wu H, Zhou Y, Li Y, Liu J, Li J, Li K, Yi F, Niu G, Tang J. AC Photonics 2018, 5: 398–405

    Article  CAS  Google Scholar 

  17. Volonakis G, Haghighirad AA, Milot RL, Sio WH, Filip MR, Wenger B, Johnston MB, Herz LM, Snaith HJ, Giustino F. Phys Chem Lett 2017, 8: 772–778

    Article  CAS  Google Scholar 

  18. Greul E, Petrus ML, Binek A, Docampo P, Bein T. Mater Chem A 2017, 5: 19972–19981

    Article  CAS  Google Scholar 

  19. Lozhkina OA, Murashkina AA, Elizarov MS, Shilovskikh VV, Zolotarev AA, Kapitonov YV, Kevorkyants R, Emeline AV, Miyasaka T. Chem Phys Lett 2018, 694: 18–22

    Article  CAS  Google Scholar 

  20. Meng W, Wang X, Xiao Z, Wang J, Mitzi DB, Yan Y. Phys Chem Lett 2017, 8: 2999–3007

    Article  CAS  Google Scholar 

  21. Shi H, Du MH. Phys Rev Appl 2015, 3: 054005

    Article  CAS  Google Scholar 

  22. Toby BH. Appl Crystlogr 2001, 34: 210–213

    Article  CAS  Google Scholar 

  23. Poblete V, Navarro G, Martin V, Alvarez M. Powder Diffr 2002, 17: 10–12

    Article  CAS  Google Scholar 

  24. Morss LR, Siegal M, Stenger L, Edelstein N. Inorg Chem 2002, 9: 1771–1775

    Article  Google Scholar 

  25. Faulkner TR, Richardson FS. Mol Phys 1978, 36: 193–914

    Article  CAS  Google Scholar 

  26. Zhang Y, Li X, Li K, Lian H, Shang M, Lin J. AC. Appl Mater Interfaces 2015, 7: 2715–2725

    Article  CAS  Google Scholar 

  27. Banerjee AK, Stewart-Darling F, Flint CD, Schwartz RW. Phys Chem 1981, 85: 146–148

    Article  CAS  Google Scholar 

  28. Liu Y, Tu D, Zhu H, Li R, Luo W, Chen X. Adv Mater 2010, 22: 3266–3271

    Article  CAS  PubMed  Google Scholar 

  29. Li L, Peng M, Viana B, Wang J, Lei B, Liu Y, Zhang Q, Qiu J. Inorg Chem 2015, 54: 6028–6034

    Article  CAS  PubMed  Google Scholar 

  30. Tang W, Zhang Z. Mater Chem C 2015, 3: 5339–5346

    Article  CAS  Google Scholar 

  31. Glodo J, van Loef EVD, Higgins WM, Shah KS. IEEE T Nucl Sci, 2008, 55: 1496–1500

    Article  CAS  Google Scholar 

  32. Hawrami R, Glodo J, Shah KS, Cherepy N, Payne S, Burger A, Boatner L. Cryst Growth 2013, 379: 69–72

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Major State Basic Research Development Program of China (2016YFB0700702), the National Natural Science Foundation of China (5171101030, 51602114), the HUST Key Innovation Team for Interdisciplinary Promotion (2016JCTD111) and the Open Fund of State Key Laboratory of Luminescence and Applications (SKLA-2016-08). The authors thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices, WNLO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangda Niu or Jiang Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Deng, Z., Hu, M. et al. X-ray scintillation in lead-free double perovskite crystals. Sci. China Chem. 61, 1581–1586 (2018). https://doi.org/10.1007/s11426-018-9308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9308-2

Keywords

Navigation