Skip to main content
Log in

Mechanically controlled FRET to achieve high-contrast fluorescence switching

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Organic luminescent materials with the ability to reversibly switch the luminescence when subjected to external stimuli have attracted considerable interest in recent years. However, luminescent materials with mechanochromic and photochromic dual-responsive properties are rarely reported. Hererin, we designed and synthesized a molecule P1 with dipeptide as a spacer to link rhodamine B and spiropyran moieties. P1 exhibited efficient photochromic properties both in solution and solid state. High-contrast independent fluorescence switch was also realized under the stimulus of external force. Moreover, two-step ring opening reaction and subsequent fluorescence resonance energy transfer process between the donor-acceptor pairs within one single molecule achieved successive color switch by mechanical control. Therefore, this behavior of P1 made it a promising candidate for high-contrast and sensitive optical recording and mechanical sensing system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chi Z, Zhang X, Xu B, Zhou X, Ma C, Zhang Y, Liu S, Xu J. Chem Soc Rev, 2012, 41: 3878–3896

    Article  CAS  Google Scholar 

  2. Wan S, Ma Z, Chen C, Li F, Wang F, Jia X, Yang W, Yin M. Adv Funct Mater, 2016, 26: 353–364

    Article  CAS  Google Scholar 

  3. Yan D, Yang H, Meng Q, Lin H, Wei M. Adv Funct Mater, 2014, 24: 587–594

    Article  CAS  Google Scholar 

  4. Zhang S, Li J, Wei J, Yin M. Sci Bull, 2018, 63: 101–107

    Article  CAS  Google Scholar 

  5. Fang M, Yang J, Liao Q, Gong Y, Xie Z, Chi Z, Peng Q, Li Q, Li Z. J Mater Chem C, 2017, 5: 9879–9885

    Article  CAS  Google Scholar 

  6. Wang Z, Zhou F, Wang J, Zhao Z, Qin A, Yu Z, Tang BZ. Sci China Chem, 2018, 61: 76–87

    Article  CAS  Google Scholar 

  7. Li Z, Liang R, Xu S, Liu W, Yan D, Wei M, Evans DG, Duan X. Nano Res, 2016, 9: 3828–3838

    Article  CAS  Google Scholar 

  8. Yang J, Ren Z, Xie Z, Liu Y, Wang C, Xie Y, Peng Q, Xu B, Tian W, Zhang F, Chi Z, Li Q, Li Z. Angew Chem Int Ed, 2017, 56: 880–884

    Article  CAS  Google Scholar 

  9. Mo S, Meng Q, Wan S, Su Z, Yan H, Tang BZ, Yin M. Adv Funct Mater, 2017, 27: 1701210–1701218

    Article  CAS  Google Scholar 

  10. Fang X, Yan D. Sci China Chem, 2018, 61: 397–401

    Article  CAS  Google Scholar 

  11. Yu T, Ou D, Wang L, Zheng S, Yang Z, Zhang Y, Chi Z, Liu S, Xu J, Aldred MP. Mater Chem Front, 2017, 1: 1900–1904

    Article  CAS  Google Scholar 

  12. Tang BZ. Sci China Chem, 2018, 61: 377–378

    Article  CAS  Google Scholar 

  13. Lv B, Wu Z, Ji C, Yang W, Yan D, Yin M. J Mater Chem C, 2015, 3: 8519–8525

    Article  CAS  Google Scholar 

  14. Yan D, Evans DG. Mater Horiz, 2014, 1: 46–57

    Article  CAS  Google Scholar 

  15. Ayranci R, Demirkol DO, Timur S, Ak M. Analyst, 2017, 142: 3407–3415

    Article  CAS  PubMed  Google Scholar 

  16. Wang T, Zhang N, Dai J, Li Z, Bai W, Bai R. ACS Appl Mater Interfaces, 2017, 9: 11874–11881

    Article  CAS  PubMed  Google Scholar 

  17. Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z. Adv Mater, 2017, 29: 1606829–1606835

    Article  CAS  Google Scholar 

  18. Meng X, Qi G, Zhang C, Wang K, Zou B, Ma Y. Chem Commun, 2015, 51: 9320–9323

    Article  CAS  Google Scholar 

  19. Meng X, Chen C, Qi G, Li X, Wang K, Zou B, Ma Y. ChemNanoMat, 2017, 3: 569–574

    Article  CAS  Google Scholar 

  20. Klajn R. Chem Soc Rev, 2014, 43: 148–184

    Article  CAS  Google Scholar 

  21. Wan S, Zheng Y, Shen J, Yang W, Yin M. ACS Appl Mater Interfaces, 2014, 6: 19515–19519

    Article  CAS  PubMed  Google Scholar 

  22. Kundu PK, Olsen GL, Kiss V, Klajn R. Nat Commun, 2014, 5: 3588

    Article  CAS  PubMed  Google Scholar 

  23. Florea L, Scarmagnani S, Benito-Lopez F, Diamond D. Chem Commun, 2014, 50: 924–926

    Article  CAS  Google Scholar 

  24. Ma Z, Ji Y, Lan Y, Kuang GC, Jia X. J Mater Chem C, 2018, 6: 2270–2274

    Article  CAS  Google Scholar 

  25. Xing Q, Li N, Chen D, Sha W, Jiao Y, Qi X, Xu Q, Lu J. J Mater Chem B, 2014, 2: 1182–1189

    Article  CAS  Google Scholar 

  26. Wu S, Luo Y, Zeng F, Chen J, Chen Y, Tong Z. Angew Chem Int Ed, 2007, 46: 7015–7018

    Article  CAS  Google Scholar 

  27. Zhou L, Zhang X, Wang Q, Lv Y, Mao G, Luo A, Wu Y, Wu Y, Zhang J, Tan W. J Am Chem Soc, 2014, 136: 9838–9841

    Article  CAS  PubMed  Google Scholar 

  28. Kong L, Wong HL, Tam AYY, Lam WH, Wu L, Yam VWW. ACS Appl Mater Interfaces, 2014, 6: 1550–1562

    Article  CAS  PubMed  Google Scholar 

  29. Kim HJ, Whang DR, Gierschner J, Lee CH, Park SY. Angew Chem Int Ed, 2015, 54: 4330–4333

    Article  CAS  Google Scholar 

  30. Wang Z, Ma Z, Wang Y, Xu Z, Luo Y, Wei Y, Jia X. Adv Mater, 2015, 27: 6469–6474

    Article  CAS  PubMed  Google Scholar 

  31. Davis DA, Hamilton A, Yang J, Cremar LD, Van Gough D, Potisek SL, Ong MT, Braun PV, Martínez TJ, White SR, Moore JS, Sottos NR. Nature, 2009, 459: 68–72

    Article  CAS  PubMed  Google Scholar 

  32. Li M, Zhang Q, Zhou YN, Zhu S. Prog Polym Sci, 2018, 79: 26–39

    Article  CAS  Google Scholar 

  33. Remón P, Hammarson M, Li S, Kahnt A, Pischel U, Andréasson J. Chem Eur J, 2011, 17: 6492–6500

    Article  CAS  PubMed  Google Scholar 

  34. Zhou W, Chen D, Li J, Xu J, Lv J, Liu H, Li Y. Org Lett, 2007, 9: 3929–3932

    Article  CAS  PubMed  Google Scholar 

  35. Wu Z, Pan K, Lü B, Ma L, Yang W, Yin M. Chem Asian J, 2016, 11: 3102–3106

    Article  CAS  PubMed  Google Scholar 

  36. Qi Q, Li C, Liu X, Jiang S, Xu Z, Lee R, Zhu M, Xu B, Tian W. J Am Chem Soc, 2017, 139: 16036–16039

    Article  CAS  PubMed  Google Scholar 

  37. Kaewtong C, Pulpoka B, Tuntulani T. Dyes Pigments, 2015, 123: 204–211

    Article  CAS  Google Scholar 

  38. Qi Q, Qian J, Ma S, Xu B, Zhang SXA, Tian W. Chem Eur J, 2015, 21: 1149–1155

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21774007, 21574009, 51521062), the Natural Science Foundation of Shaanxi Province, China (2016ZDJC19) and Yan’an Science & Technology Innovation Team (2015CHTD-04).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yantu Zhang or Meizhen Yin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, S., Tan, L., Fang, B. et al. Mechanically controlled FRET to achieve high-contrast fluorescence switching. Sci. China Chem. 61, 1587–1593 (2018). https://doi.org/10.1007/s11426-018-9303-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9303-9

Keywords

Navigation