Advertisement

Science China Chemistry

, Volume 61, Issue 11, pp 1405–1412 | Cite as

Short-axis substitution approach on ladder-type benzodithiophene-based electron acceptor toward highly efficient organic solar cells

  • Jiu-Dong Lin
  • Lian Zhong
  • Fu-Peng Wu
  • Yongxi LiEmail author
  • Yi Yuan
  • Haijun Bin
  • Zhanjun ZhangEmail author
  • Feng LiuEmail author
  • Jian Fan
  • Zhi-Guo Zhang
  • Liang-Sheng Liao
  • Zuo-Quan JiangEmail author
  • Yongfang Li
Articles

Abstract

Short-axis substitution, as an effective way to change the optical and electronic properties of the organic semiconductors for organic photovoltaics (OPVs), is a readily approach to modify non-fullerene acceptors, especially for the linear fused rings system. Here, two new fused-ring electron acceptors (CBT-IC and SBT-IC) were designed and developed by short-axis modification based on the dithienyl[1,2-b:4,5-b′]benzodithiophene (BDCPDT) system. Combined with a medium bandgap polymer donor J71, both of the OPV devices exhibit high power conversion efficiency (PCE) over 11%, and ~70% external quantum efficiencies. To better understand how this kind of substitution affects the BDCPDT based acceptors, a comparative analysis is also made with the the plain acceptor BDT-IC without this modification. We believe this work could disclose the great potential and the versatility of BDCPDT block and also enlighten other ladder-type series for further optimization.

Keywords

organic photovoltaics electron acceptors ladder-type unit benzo[1,2-b:4,5-b′]dithiophene short-axis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61575136, 21504062, 91633301, 91433117, 21572152), the National Key R&D Program of China (2016YFB0400700), the Collaborative Innovation Center of Suzhou Nano Science and Technology (Nano-CIC), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the “111” Project of the State Administration of Foreign Experts Affairs of China, and the Yunnan Provincial Research Funds on College-Enterprise Collaboration (2015IB016). We thank Yun Li for MALDI-TOF test and Zhuo Xu for TEM test. Jiu-Dong Lin and Lian Zhong contributed equally to this work.

Supplementary material

11426_2018_9275_MOESM1_ESM.docx (4.3 mb)
Short-Axis Substitution Approach on Ladder-Type Benzodithiophene-Based Electron Acceptor toward Highly Efficient Organic Solar Cells

References

  1. 1.
    Matuszná K, Lukeš V, Rapta P, Dunsch L, Aquino AJA, Lischka H. Synth Met, 2007, 157: 214–221CrossRefGoogle Scholar
  2. 2.
    Poduval MKK, Hahn SJ, Kim TH. Bull Korean Chem Soc, 2012, 33: 2040–2042CrossRefGoogle Scholar
  3. 3.
    Lin H, Chen S, Li Z, Lai JYL, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Adv Mater, 2015, 27: 7299–7304CrossRefGoogle Scholar
  4. 4.
    McCulloch I, Ashraf RS, Biniek L, Bronstein H, Combe C, Donaghey JE, James DI, Nielsen CB, Schroeder BC, Zhang W. Acc Chem Res, 2012, 45: 714–722CrossRefGoogle Scholar
  5. 5.
    Li Y, Yao K, Yip HL, Ding FZ, Xu YX, Li X, Chen Y, Jen AKY. Adv Funct Mater, 2014, 24: 3631–3638CrossRefGoogle Scholar
  6. 6.
    Vegiraju S, He GY, Kim C, Priyanka P, Chiu YJ, Liu CW, Huang CY, Ni JS, Wu YW, Chen Z, Lee GH, Tung SH, Liu CL, Chen MC, Facchetti A. Adv Funct Mater, 2017, 27: 1606761CrossRefGoogle Scholar
  7. 7.
    Xia J, Sanders SN, Cheng W, Low JZ, Liu J, Campos LM, Sun T. Adv Mater, 2017, 29: 1601652CrossRefGoogle Scholar
  8. 8.
    Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437CrossRefGoogle Scholar
  9. 9.
    Engmann S, Ro HW, Herzing AA, DeLongchamp DM, Snyder CR, Richter LJ, Barito A, Gundlach DJ. J Mater Chem A, 2017, 5: 6893–6904CrossRefGoogle Scholar
  10. 10.
    Pappenfus TM, Seidenkranz DT, Reinheimer EW. Heterocycles, 2012, 85: 355–364CrossRefGoogle Scholar
  11. 11.
    Hwang J, Park J, Kim YJ, Ha YH, Park CE, Chung DS, Kwon SK, Kim YH. Chem Mater, 2017, 29: 2135–2140CrossRefGoogle Scholar
  12. 12.
    Mo D, Wang H, Chen H, Qu S, Chao P, Yang Z, Tian L, Su YA, Gao Y, Yang B, Chen W, He F. Chem Mater, 2017, 29: 2819–2830CrossRefGoogle Scholar
  13. 13.
    Wang Z, Zheng N, Zhang W, Yan H, Xie Z, Ma Y, Huang F, Cao Y. Adv Energy Mater, 2017, 7: 1700232CrossRefGoogle Scholar
  14. 14.
    Majewski MA, Hong Y, Lis T, Gregoliński J, Chmielewski PJ, Cybińska J, Kim D, Stępień M. Angew Chem Int Ed, 2016, 55: 14072–14076CrossRefGoogle Scholar
  15. 15.
    Xu Z, Fan Q, Meng X, Guo X, Su W, Ma W, Zhang M, Li Y. Chem Mater, 2017, 29: 4811–4818CrossRefGoogle Scholar
  16. 16.
    Li Y, Gu M, Pan Z, Zhang B, Yang X, Gu J, Chen Y. J Mater Chem A, 2017, 5: 10798–10814CrossRefGoogle Scholar
  17. 17.
    Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, Su CJ, Li T, Wang J, Zhu J, Sun Y, Wang C, Zhan X. J Am Chem Soc, 2016, 138: 2973–2976CrossRefGoogle Scholar
  18. 18.
    Wu Y, Bai H, Wang Z, Cheng P, Zhu S, Wang Y, Ma W, Zhan X. Energy Environ Sci, 2015, 8: 3215–3221CrossRefGoogle Scholar
  19. 19.
    Kim H, Lim B, Heo H, Nam G, Lee H, Lee JY, Lee J, Lee Y. Chem Mater, 2017, 29: 4301–4310CrossRefGoogle Scholar
  20. 20.
    Che X, Chung CL, Liu X, Chou SH, Liu YH, Wong KT, Forrest SR. Adv Mater, 2016, 28: 8248–8255CrossRefGoogle Scholar
  21. 21.
    Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170–1174CrossRefGoogle Scholar
  22. 22.
    Li Y, Zhong L, Wu FP, Yuan Y, Bin HJ, Jiang ZQ, Zhang Z, Zhang ZG, Li Y, Liao LS. Energy Environ Sci, 2016, 9: 3429–3435CrossRefGoogle Scholar
  23. 23.
    Li Y, Liu X, Wu FP, Zhou Y, Jiang ZQ, Song B, Xia Y, Zhang ZG, Gao F, Inganäs O, Li Y, Liao LS. J Mater Chem A, 2016, 4: 5890–5897CrossRefGoogle Scholar
  24. 24.
    Li Y, Qian D, Zhong L, Lin JD, Jiang ZQ, Zhang ZG, Zhang Z, Li Y, Liao LS, Zhang F. Nano Energy, 2016, 27: 430–438CrossRefGoogle Scholar
  25. 25.
    Liu F, Zhou Z, Zhang C, Zhang J, Hu Q, Vergote T, Liu F, Russell TP, Zhu X. Adv Mater, 2017, 29: 1606574CrossRefGoogle Scholar
  26. 26.
    Jia J, Zheng N, Wang Z, Huang Y, Duan C, Huang F, Cao Y. Sci China Chem, 2017, 60: 1458–1467CrossRefGoogle Scholar
  27. 27.
    Dai S, Zhao F, Zhang Q, Lau TK, Li T, Liu K, Ling Q, Wang C, Lu X, You W, Zhan X. J Am Chem Soc, 2017, 139: 1336–1343CrossRefGoogle Scholar
  28. 28.
    Li S, Ye L, Zhao W, Zhang S, Ade H, Hou J. Adv Energy Mater, 2017, 7: 1700183CrossRefGoogle Scholar
  29. 29.
    Yang Y, Zhang ZG, Bin H, Chen S, Gao L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 15011–15018CrossRefGoogle Scholar
  30. 30.
    Lin Y, Zhao F, He Q, Huo L, Wu Y, Parker TC, Ma W, Sun Y, Wang C, Zhu D, Heeger AJ, Marder SR, Zhan X. J Am Chem Soc, 2016, 138: 4955–4961CrossRefGoogle Scholar
  31. 31.
    Zhao F, Dai S, Wu Y, Zhang Q, Wang J, Jiang L, Ling Q, Wei Z, Ma W, You W, Wang C, Zhan X. Adv Mater, 2017, 29: 1700144CrossRefGoogle Scholar
  32. 32.
    Yi YQQ, Feng H, Chang M, Zhang H, Wan X, Li C, Chen Y. J Mater Chem A, 2017, 5: 17204–17210CrossRefGoogle Scholar
  33. 33.
    Li S, Ye L, Zhao W, Liu X, Zhu J, Ade H, Hou J. Adv Mater, 2017, 29: 1704051CrossRefGoogle Scholar
  34. 34.
    Feng H, Qiu N, Wang X, Wang Y, Kan B, Wan X, Zhang M, Xia A, Li C, Liu F, Zhang H, Chen Y. Chem Mater, 2017, 29: 7908–7917CrossRefGoogle Scholar
  35. 35.
    Li R, Liu G, Xiao M, Yang X, Liu X, Wang Z, Ying L, Huang F, Cao Y. J Mater Chem A, 2017, 5: 23926–23936CrossRefGoogle Scholar
  36. 36.
    Xie D, Liu T, Gao W, Zhong C, Huo L, Luo Z, Wu K, Xiong W, Liu F, Sun Y, Yang C. Sol RRL, 2017, 1: 1700044CrossRefGoogle Scholar
  37. 37.
    Luo Z, Bin H, Liu T, Zhang ZG., Yang Y, Zhong C, Qiu B, Li G, Gao W, Xie D, Wu K, Sun Y, Liu F, Li Y, Yang C. Adv Mater, 2018, 30: 1706124CrossRefGoogle Scholar
  38. 38.
    Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J. J Am Chem Soc, 2017, 139: 7148–7151CrossRefGoogle Scholar
  39. 39.
    Fan Q, Su W, Wang Y, Guo B, Jiang Y, Guo X, Liu F, Russell TP, Zhang M, Li Y. Sci China Chem, 2018, 61: 531–537CrossRefGoogle Scholar
  40. 40.
    Zhu J, Wu Y, Rech J, Wang J, Liu K, Li T, Lin Y, Ma W, You W, Zhan X. J Mater Chem C, 2018, 6: 66–71CrossRefGoogle Scholar
  41. 41.
    Ma Y, Zhang M, Yan Y, Xin J, Wang T, Ma W, Tang C, Zheng Q. Chem Mater, 2017, 29: 7942–7952CrossRefGoogle Scholar
  42. 42.
    Joly D, Godfroy M, Pellejà L, Kervella Y, Maldivi P, Narbey S, Oswald F, Palomares E, Demadrille R. J Mater Chem A, 2017, 5: 6122–6130CrossRefGoogle Scholar
  43. 43.
    Wang J, Wang W, Wang X, Wu Y, Zhang Q, Yan C, Ma W, You W, Zhan X. Adv Mater, 2017, 29: 1702125CrossRefGoogle Scholar
  44. 44.
    Liu T, Pan X, Meng X, Liu Y, Wei D, Ma W, Huo L, Sun X, Lee TH, Huang M, Choi H, Kim JY, Choy WCH, Sun Y. Adv Mater, 2017, 29: 1604251CrossRefGoogle Scholar
  45. 45.
    Yao H, Ye L, Zhang H, Li S, Zhang S, Hou J. Chem Rev, 2016, 116: 7397–7457CrossRefGoogle Scholar
  46. 46.
    Kan B, Feng H, Wan X, Liu F, Ke X, Wang Y, Wang Y, Zhang H, Li C, Hou J, Chen Y. J Am Chem Soc, 2017, 139: 4929–4934CrossRefGoogle Scholar
  47. 47.
    Li Y, Zhong L, Lin JD, Wu FP, Bin HJ, Zhang Z, Xu L, Jiang ZQ, Zhang ZG, Liu F, Russell TP, Li Y, Liao LS, Forrest SR. Sol RRL, 2017, 1: 1700107CrossRefGoogle Scholar
  48. 48.
    Zhu E, Ge G, Shu J, Yi M, Bian L, Hai J, Yu J, Liu Y, Zhou J, Tang W. J Mater Chem A, 2014, 2: 13580–13586CrossRefGoogle Scholar
  49. 49.
    Huo L, Ye L, Wu Y, Li Z, Guo X, Zhang M, Zhang S, Hou J. Macromolecules, 2012, 45: 6923–6929CrossRefGoogle Scholar
  50. 50.
    Loser S, Lou SJ, Savoie BM, Bruns CJ, Timalsina A, Leonardi MJ, Smith J, Harschneck T, Turrisi R, Zhou N, Stern CL, Sarjeant AA, Facchetti A, Chang RPH, Stupp SI, Ratner MA, Chen LX, Marks TJ. J Mater Chem A, 2017, 5: 9217–9232CrossRefGoogle Scholar
  51. 51.
    Li Y, Zhong L, Gautam B, Bin HJ, Lin JD, Wu FP, Zhang Z, Jiang ZQ, Zhang ZG, Gundogdu K, Li Y, Liao LS. Energy Environ Sci, 2017, 10: 1610–1620CrossRefGoogle Scholar
  52. 52.
    Li Y, Lin JD, Che X, Qu Y, Liu F, Liao LS, Forrest SR. J Am Chem Soc, 2017, 139: 17114–17119CrossRefGoogle Scholar
  53. 53.
    Kan B, Zhang J, Liu F, Wan X, Li C, Ke X, Wang Y, Feng H, Zhang Y, Long G, Friend RH, Bakulin AA, Chen Y. Adv Mater, 2017, 30: 1704904CrossRefGoogle Scholar
  54. 54.
    Mei J, Bao Z. Chem Mater, 2014, 26: 604–615CrossRefGoogle Scholar
  55. 55.
    Lei T, Wang JY, Pei J. Chem Mater, 2014, 26: 594–603CrossRefGoogle Scholar
  56. 56.
    Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192–209CrossRefGoogle Scholar
  57. 57.
    Bin H, Zhang ZG, Gao L, Chen S, Zhong L, Xue L, Yang C, Li Y. J Am Chem Soc, 2016, 138: 4657–4664CrossRefGoogle Scholar
  58. 58.
    Cui C, Wong WY, Li Y. Energy Environ Sci, 2014, 7: 2276–2284CrossRefGoogle Scholar
  59. 59.
    Cheng YJ, Luo J, Huang S, Zhou X, Shi Z, Kim TD, Bale DH, Takahashi S, Yick A, Polishak BM, Jang SH, Dalton LR, Reid PJ, Steier WH, Jen AKY. Chem Mater, 2008, 20: 5047–5054CrossRefGoogle Scholar
  60. 60.
    Bin H, Gao L, Zhang ZG, Yang Y, Zhang Y, Zhang C, Chen S, Xue L, Yang C, Xiao M, Li Y. Nat Commun, 2016, 7: 13651CrossRefGoogle Scholar
  61. 61.
    Cheng YJ, Chen CH, Ho YJ, Chang SW, Witek HA, Hsu CS. Org Lett, 2011, 13: 5484–5487CrossRefGoogle Scholar
  62. 62.
    Tsai CE, Yu RH, Lin FJ, Lai YY, Hsu JY, Cheng SW, Hsu CS, Cheng YJ. Chem Mater, 2016, 28: 5121–5130CrossRefGoogle Scholar
  63. 63.
    Ko CJ, Lin YK, Chen FC, Chu CW. Appl Phys Lett, 2007, 90: 063509CrossRefGoogle Scholar
  64. 64.
    Zhang ZG, Qi B, Jin Z, Chi D, Qi Z, Li Y, Wang J. Energy Environ Sci, 2014, 7: 1966-1973CrossRefGoogle Scholar
  65. 65.
    Proctor CM, Kuik M, Nguyen TQ. Prog Polymer Sci, 2013, 38: 1941–1960CrossRefGoogle Scholar
  66. 66.
    Blom P, Mihailetchi V, Koster L, Markov D. Adv Mater, 2007, 19: 1551–1566CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM)Soochow UniversitySuzhouChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Beijing National Laboratory for Molecular Sciences, Institute of ChemistryChinese Academy of SciencesBeijingChina
  4. 4.Department of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA)Shanghai Jiaotong UniversityShanghaiChina

Personalised recommendations