Science China Chemistry

, Volume 61, Issue 10, pp 1278–1284 | Cite as

Supersaturation controlled growth of MAFAPbI3 perovskite film for high efficiency solar cells

  • Dong Liu
  • Wenjia Zhou
  • Haoying Tang
  • Pengfei Fu
  • Zhijun NingEmail author


Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy (SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies (PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.


perovskite solar cell nucleation and growth supersaturation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Key Research and Development Program of China (2016YFA0204000), the National Natural Science Foundation of China (U1632118, 21571129), Shanghai Tech Start-Up Funding, 1000 Young Talent program, and Science and Technology Commission of Shanghai Municipality (16JC1402100, 16520720700).

Supplementary material

11426_2018_9250_MOESM1_ESM.docx (1 mb)
Supersaturation controlled growth of MAFAPbI3 perovskite film for high efficiency solar cells


  1. 1.
  2. 2.
    Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238CrossRefGoogle Scholar
  3. 3.
    Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Science, 2017, 356: 1376–1379CrossRefPubMedGoogle Scholar
  4. 4.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Science, 2015, 347: 519–522CrossRefPubMedGoogle Scholar
  5. 5.
    Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. Science, 2015, 347: 522–525CrossRefPubMedGoogle Scholar
  6. 6.
    Im JH, Lee CR, Lee JW, Park SW, Park NG. Nanoscale, 2011, 3: 4088–4093CrossRefPubMedGoogle Scholar
  7. 7.
    Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316–319CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395–398CrossRefPubMedGoogle Scholar
  9. 9.
    Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897–903CrossRefPubMedGoogle Scholar
  10. 10.
    Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG. J Am Chem Soc, 2015, 137: 8696–8699CrossRefPubMedGoogle Scholar
  11. 11.
    Lee JW, Kim HS, Park NG. Acc Chem Res, 2016, 49: 311–319CrossRefPubMedGoogle Scholar
  12. 12.
    Yang M, Zhang T, Schulz P, Li Z, Li G, Kim DH, Guo N, Berry JJ, Zhu K, Zhao Y. Nat Commun, 2016, 7: 12305CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234–1237CrossRefPubMedGoogle Scholar
  14. 14.
    Jo Y, Oh KS, Kim M, Kim KH, Lee H, Lee CW, Kim DS. Adv Mater Interfaces, 2016, 3: 1500768CrossRefGoogle Scholar
  15. 15.
    He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed MA, Huang J, Lin Z. Nat Commun, 2017, 8: 16045CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    von Weimarn PP. Chem Rev, 1925, 2: 217–242CrossRefGoogle Scholar
  17. 17.
    Neilsen AE. Kinetics of Precipitation. Oxford: Pergamon, 1964Google Scholar
  18. 18.
    Abraham FF. Homogeneous Nucleation Theory. New York: Academic Press, 1974Google Scholar
  19. 19.
    Karma A, Plapp M. Phys Rev Lett, 1998, 81: 4444–4447CrossRefGoogle Scholar
  20. 20.
    Smereka P. Phys D-Nonlin Phenom, 2000, 138: 282–301CrossRefGoogle Scholar
  21. 21.
    Burton WK, Cabrera N, Frank FC. Philos Trans R Soc A-Math Phys Eng Sci, 1951, 243: 299–358CrossRefGoogle Scholar
  22. 22.
    Li L, Chen Y, Liu Z, Chen Q, Wang X, Zhou H. Adv Mater, 2016, 28: 9862–9868CrossRefPubMedGoogle Scholar
  23. 23.
    Zhu W, Kang L, Yu T, Lv B, Wang Y, Chen X, Wang X, Zhou Y, Zou Z. ACS Appl Mater Interfaces, 2017, 9: 6104–6113CrossRefPubMedGoogle Scholar
  24. 24.
    Cao J, Jing X, Yan J, Hu C, Chen R, Yin J, Li J, Zheng N. J Am Chem Soc, 2016, 138: 9919–9926CrossRefPubMedGoogle Scholar
  25. 25.
    Kim M, Kim GH, Oh KS, Jo Y, Yoon H, Kim KH, Lee H, Kim JY, Kim DS. ACS Nano, 2017, 11: 6057–6064CrossRefPubMedGoogle Scholar
  26. 26.
    Xie LQ, Chen L, Nan ZA, Lin HX, Wang T, Zhan DP, Yan JW, Mao BW, Tian ZQ. J Am Chem Soc, 2017, 139: 3320–3323CrossRefPubMedGoogle Scholar
  27. 27.
    Yu Y, Wang C, Grice CR, Shrestha N, Zhao D, Liao W, Guan L, Awni RA, Meng W, Cimaroli AJ, Zhu K, Ellingson RJ, Yan Y. ACS Energy Lett, 2017, 2: 1177–1182CrossRefGoogle Scholar
  28. 28.
    Foley BJ, Girard J, Sorenson BA, Chen AZ, Scott Niezgoda J, Alpert MR, Harper AF, Smilgies DM, Clancy P, Saidi WA, Choi JJ. J Mater Chem A, 2017, 5: 113–123CrossRefGoogle Scholar
  29. 29.
    Giesbrecht N, Schlipf J, Oesinghaus L, Binek A, Bein T, Müller-Buschbaum P, Docampo P. ACS Energy Lett, 2016, 1: 150–154CrossRefGoogle Scholar
  30. 30.
    Schlipf J, Muller-Buschbaum P. Adv Energy Mater, 2017, 7: 1700131CrossRefGoogle Scholar
  31. 31.
    Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476–480CrossRefPubMedGoogle Scholar
  32. 32.
    Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gra tzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dong Q, Yuan Y, Shao Y, Fang Y, Wang Q, Huang J. Energy Environ Sci, 2015, 8: 2464–2470CrossRefGoogle Scholar
  34. 34.
    Kim J, Yun JS, Cho Y, Lee DS, Wilkinson B, Soufiani AM, Deng X, Zheng J, Shi A, Lim S, Chen S, Hameiri Z, Zhang M, Lau CFJ, Huang S, Green MA, Ho-Baillie AWY. ACS Energy Lett, 2017, 2: 1978–1984CrossRefGoogle Scholar
  35. 35.
    Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726CrossRefPubMedGoogle Scholar
  36. 36.
    Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2016, 2: 16177CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Dong Liu
    • 1
    • 2
    • 3
  • Wenjia Zhou
    • 1
  • Haoying Tang
    • 1
  • Pengfei Fu
    • 1
  • Zhijun Ning
    • 1
    Email author
  1. 1.School of Physical Science and TechnologyShanghai Tech UniversityShanghaiChina
  2. 2.Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations