Skip to main content
Log in

Supersaturation controlled growth of MAFAPbI3 perovskite film for high efficiency solar cells

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Controlling the nucleation and growth of organic-inorganic hybrids perovskite is of key importance to improve the morphology and crystallinity of perovskite films. However, the growth mechanism of perovskite films based on classical crystallization theory is not fully understood. Here, we develop a supersaturation controlled strategy (SCS) to balance the nucleation and crystal growth speeds. By this strategy, we are able to find an ideal supersaturation region to realize a balance of nucleation and crystal growth, which yields highly crystallized perovskite films with micrometer-scale grains. Besides, we provide a thoughtful analysis of nucleation and growth based on the fabrication of the perovskite films. As a result, the highest photovoltaic power conversion efficiencies (PCE) of 19.70% and 20.31% are obtained for the planar and the meso-superstructured devices, respectively. This strategy sheds some light for understanding the film growth mechanism of high quality perovskite film, and it provides a facile strategy to fabricate high efficiency perovskite solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. https://doi.org/www.nrel.gov/pv/assets/images/efficiency-chart.png

  2. Xiao J, Shi J, Li D, Meng Q. Sci China Chem, 2015, 58: 221–238

    Article  CAS  Google Scholar 

  3. Yang WS, Park BW, Jung EH, Jeon NJ, Kim YC, Lee DU, Shin SS, Seo J, Kim EK, Noh JH, Seok SI. Science, 2017, 356: 1376–1379

    Article  CAS  PubMed  Google Scholar 

  4. Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Science, 2015, 347: 519–522

    Article  CAS  PubMed  Google Scholar 

  5. Nie W, Tsai H, Asadpour R, Blancon JC, Neukirch AJ, Gupta G, Crochet JJ, Chhowalla M, Tretiak S, Alam MA, Wang HL, Mohite AD. Science, 2015, 347: 522–525

    Article  CAS  PubMed  Google Scholar 

  6. Im JH, Lee CR, Lee JW, Park SW, Park NG. Nanoscale, 2011, 3: 4088–4093

    Article  CAS  PubMed  Google Scholar 

  7. Burschka J, Pellet N, Moon SJ, Humphry-Baker R, Gao P, Nazeeruddin MK, Grätzel M. Nature, 2013, 499: 316–319

    Article  CAS  PubMed  Google Scholar 

  8. Liu M, Johnston MB, Snaith HJ. Nature, 2013, 501: 395–398

    Article  CAS  PubMed  Google Scholar 

  9. Jeon NJ, Noh JH, Kim YC, Yang WS, Ryu S, Seok SI. Nat Mater, 2014, 13: 897–903

    Article  CAS  PubMed  Google Scholar 

  10. Ahn N, Son DY, Jang IH, Kang SM, Choi M, Park NG. J Am Chem Soc, 2015, 137: 8696–8699

    Article  CAS  PubMed  Google Scholar 

  11. Lee JW, Kim HS, Park NG. Acc Chem Res, 2016, 49: 311–319

    Article  CAS  PubMed  Google Scholar 

  12. Yang M, Zhang T, Schulz P, Li Z, Li G, Kim DH, Guo N, Berry JJ, Zhu K, Zhao Y. Nat Commun, 2016, 7: 12305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang WS, Noh JH, Jeon NJ, Kim YC, Ryu S, Seo J, Seok SI. Science, 2015, 348: 1234–1237

    Article  CAS  PubMed  Google Scholar 

  14. Jo Y, Oh KS, Kim M, Kim KH, Lee H, Lee CW, Kim DS. Adv Mater Interfaces, 2016, 3: 1500768

    Article  CAS  Google Scholar 

  15. He M, Li B, Cui X, Jiang B, He Y, Chen Y, O’Neil D, Szymanski P, Ei-Sayed MA, Huang J, Lin Z. Nat Commun, 2017, 8: 16045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. von Weimarn PP. Chem Rev, 1925, 2: 217–242

    Article  Google Scholar 

  17. Neilsen AE. Kinetics of Precipitation. Oxford: Pergamon, 1964

    Google Scholar 

  18. Abraham FF. Homogeneous Nucleation Theory. New York: Academic Press, 1974

    Google Scholar 

  19. Karma A, Plapp M. Phys Rev Lett, 1998, 81: 4444–4447

    Article  CAS  Google Scholar 

  20. Smereka P. Phys D-Nonlin Phenom, 2000, 138: 282–301

    Article  CAS  Google Scholar 

  21. Burton WK, Cabrera N, Frank FC. Philos Trans R Soc A-Math Phys Eng Sci, 1951, 243: 299–358

    Article  Google Scholar 

  22. Li L, Chen Y, Liu Z, Chen Q, Wang X, Zhou H. Adv Mater, 2016, 28: 9862–9868

    Article  CAS  PubMed  Google Scholar 

  23. Zhu W, Kang L, Yu T, Lv B, Wang Y, Chen X, Wang X, Zhou Y, Zou Z. ACS Appl Mater Interfaces, 2017, 9: 6104–6113

    Article  CAS  PubMed  Google Scholar 

  24. Cao J, Jing X, Yan J, Hu C, Chen R, Yin J, Li J, Zheng N. J Am Chem Soc, 2016, 138: 9919–9926

    Article  CAS  PubMed  Google Scholar 

  25. Kim M, Kim GH, Oh KS, Jo Y, Yoon H, Kim KH, Lee H, Kim JY, Kim DS. ACS Nano, 2017, 11: 6057–6064

    Article  CAS  PubMed  Google Scholar 

  26. Xie LQ, Chen L, Nan ZA, Lin HX, Wang T, Zhan DP, Yan JW, Mao BW, Tian ZQ. J Am Chem Soc, 2017, 139: 3320–3323

    Article  CAS  PubMed  Google Scholar 

  27. Yu Y, Wang C, Grice CR, Shrestha N, Zhao D, Liao W, Guan L, Awni RA, Meng W, Cimaroli AJ, Zhu K, Ellingson RJ, Yan Y. ACS Energy Lett, 2017, 2: 1177–1182

    Article  CAS  Google Scholar 

  28. Foley BJ, Girard J, Sorenson BA, Chen AZ, Scott Niezgoda J, Alpert MR, Harper AF, Smilgies DM, Clancy P, Saidi WA, Choi JJ. J Mater Chem A, 2017, 5: 113–123

    Article  CAS  Google Scholar 

  29. Giesbrecht N, Schlipf J, Oesinghaus L, Binek A, Bein T, Müller-Buschbaum P, Docampo P. ACS Energy Lett, 2016, 1: 150–154

    Article  CAS  Google Scholar 

  30. Schlipf J, Muller-Buschbaum P. Adv Energy Mater, 2017, 7: 1700131

    Article  CAS  Google Scholar 

  31. Jeon NJ, Noh JH, Yang WS, Kim YC, Ryu S, Seo J, Seok SI. Nature, 2015, 517: 476–480

    Article  CAS  PubMed  Google Scholar 

  32. Bi D, Tress W, Dar MI, Gao P, Luo J, Renevier C, Schenk K, Abate A, Giordano F, Correa Baena JP, Decoppet JD, Zakeeruddin SM, Nazeeruddin MK, Gra tzel M, Hagfeldt A. Sci Adv, 2016, 2: e1501170

    Article  PubMed  PubMed Central  Google Scholar 

  33. Dong Q, Yuan Y, Shao Y, Fang Y, Wang Q, Huang J. Energy Environ Sci, 2015, 8: 2464–2470

    Article  CAS  Google Scholar 

  34. Kim J, Yun JS, Cho Y, Lee DS, Wilkinson B, Soufiani AM, Deng X, Zheng J, Shi A, Lim S, Chen S, Hameiri Z, Zhang M, Lau CFJ, Huang S, Green MA, Ho-Baillie AWY. ACS Energy Lett, 2017, 2: 1978–1984

    Article  CAS  Google Scholar 

  35. Tan H, Jain A, Voznyy O, Lan X, García de Arquer FP, Fan JZ, Quintero-Bermudez R, Yuan M, Zhang B, Zhao Y, Fan F, Li P, Quan LN, Zhao Y, Lu ZH, Yang Z, Hoogland S, Sargent EH. Science, 2017, 355: 722–726

    Article  CAS  PubMed  Google Scholar 

  36. Jiang Q, Zhang L, Wang H, Yang X, Meng J, Liu H, Yin Z, Wu J, Zhang X, You J. Nat Energy, 2016, 2: 16177

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFA0204000), the National Natural Science Foundation of China (U1632118, 21571129), Shanghai Tech Start-Up Funding, 1000 Young Talent program, and Science and Technology Commission of Shanghai Municipality (16JC1402100, 16520720700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijun Ning.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Zhou, W., Tang, H. et al. Supersaturation controlled growth of MAFAPbI3 perovskite film for high efficiency solar cells. Sci. China Chem. 61, 1278–1284 (2018). https://doi.org/10.1007/s11426-018-9250-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-018-9250-6

Keywords

Navigation