Recent progress on Ge oxide anode materials for lithium-ion batteries

Reviews
  • 30 Downloads

Abstract

In recent years, germanium oxides have attracted increasing attention as a new type of anode material to replace graphite for lithium-ion batteries because of their high capacity, appropriate voltage potential, and good safety properties. In this review, recent important advances for Ge oxide anode materials are summarized. The limitations of Ge oxide anode materials are discussed, and potential research directions are presented.

Keywords

Ge oxides anode lithium-ion batteries 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Science Foundation of China (51502009, 51532001, 21675109), the National Key Basic Research Program of China (2014CB31802), and the Science Foundation of Henan province (162300410209).

References

  1. 1.
    Wei W, Wang Z, Liu Z, Liu Y, He L, Chen D, Umar A, Guo L, Li J. J Power Sources, 2013, 238: 376–387CrossRefGoogle Scholar
  2. 2.
    Billaud J, Bouville F, Magrini T, Villevieille C, Studart AR. Nat Energy, 2016, 1: 16097CrossRefGoogle Scholar
  3. 3.
    Seng KH, Park M, Guo ZP, Liu HK, Cho J. Nano Lett, 2013, 13: 1230–1236CrossRefGoogle Scholar
  4. 4.
    Xiao X, Liu X, Zhao H, Chen D, Liu F, Xiang J, Hu Z, Li Y. Adv Mater, 2012, 24: 5762–5766CrossRefGoogle Scholar
  5. 5.
    Wu XL, Guo YG, Wan LJ. Chem Asian J, 2013, 8: 1948–1958CrossRefGoogle Scholar
  6. 6.
    Cui G, Gu L, Zhi L, Kaskhedikar N, van Aken PA, Müllen K, Maier J. Adv Mater, 2008, 20: 3079–3083CrossRefGoogle Scholar
  7. 7.
    Wei W, Tian A, Jia F, Wang K, Qu P, Xu M. RSC Adv, 2016, 6: 87440–87445CrossRefGoogle Scholar
  8. 8.
    Xue DJ, Xin S, Yan Y, Jiang KC, Yin YX, Guo YG, Wan LJ. J Am Chem Soc, 2012, 134: 2512–2515CrossRefGoogle Scholar
  9. 9.
    Seo MH, Park M, Lee KT, Kim K, Kim J, Cho J. Energy Environ Sci, 2011, 4: 425–428CrossRefGoogle Scholar
  10. 10.
    Park MH, Kim K, Kim J, Cho J. Adv Mater, 2010, 22: 415–418CrossRefGoogle Scholar
  11. 11.
    Wei W, Guo L. Part Part Syst Charact, 2013, 30: 658–661CrossRefGoogle Scholar
  12. 12.
    Xiao W, Zhou J, Yu L, Wang D, Lou XWD. Angew Chem Int Ed, 2016, 55: 7427–7431CrossRefGoogle Scholar
  13. 13.
    Liu J, Song K, Zhu C, Chen CC, van Aken PA, Maier J, Yu Y. ACS Nano, 2014, 8: 7051–7059CrossRefGoogle Scholar
  14. 14.
    Li X, Liang J, Hou Z, Zhang W, Wang Y, Zhu Y, Qian Y. J Power Sources, 2015, 293: 868–875CrossRefGoogle Scholar
  15. 15.
    Ngo DT, Le HTT, Kim C, Lee JY, Fisher JG, Kim ID, Park CJ. Energy Environ Sci, 2015, 8: 3577–3588CrossRefGoogle Scholar
  16. 16.
    Liu D, Liu ZJ, Li X, Xie W, Wang Q, Liu Q, Fu Y, He D. Small, 2017, 13: 1702000CrossRefGoogle Scholar
  17. 17.
    Chen JS, Lou XWD. Small, 2013, 9: 1877–1893CrossRefGoogle Scholar
  18. 18.
    Yin YX, Xin S, Wan LJ, Li CJ, Guo YG. Sci China Chem, 2012, 55: 1314–1318CrossRefGoogle Scholar
  19. 19.
    Guo H, Ruan B, Liu L, Zhang L, Tao Z, Chou S, Wang J, Liu H. Small, 2017, 13: 1700920CrossRefGoogle Scholar
  20. 20.
    Li D, Wang H, Zhou T, Zhang W, Liu HK, Guo Z. Adv Energy Mater, 2017, 7: 1700488CrossRefGoogle Scholar
  21. 21.
    Wu S, Han C, Iocozzia J, Lu M, Ge R, Xu R, Lin Z. Angew Chem Int Ed, 2016, 55: 7898–7922CrossRefGoogle Scholar
  22. 22.
    Hu Z, Zhang S, Zhang C, Cui G. Coordin Chem Rev, 2016, 326: 34–85CrossRefGoogle Scholar
  23. 23.
    Vaughn DD II, Schaak RE. Chem Soc Rev, 2013, 42: 2861–2879CrossRefGoogle Scholar
  24. 24.
    Xiao X, Li X, Zheng S, Shao J, Xue H, Pang H. Adv Mater Interfaces, 2017, 4: 1600798CrossRefGoogle Scholar
  25. 25.
    Li X, Liang J, Hou Z, Zhu Y, Wang Y, Qian Y. Chem Commun, 2014, 50: 13956–13959CrossRefGoogle Scholar
  26. 26.
    Wei W, Jia F, Qu P, Huang Z, Wang H, Guo L. Nanoscale, 2017, 9: 3961–3968CrossRefGoogle Scholar
  27. 27.
    McNulty D, Geaney H, Buckley D, O'Dwyer C. Nano Energy, 2018, 43: 11–21CrossRefGoogle Scholar
  28. 28.
    Lin YM, Klavetter KC, Heller A, Mullins CB. J Phys Chem Lett, 2013, 4: 999–1004CrossRefGoogle Scholar
  29. 29.
    Son Y, Park M, Son Y, Lee JS, Jang JH, Kim Y, Cho J. Nano Lett, 2014, 14: 1005–1010CrossRefGoogle Scholar
  30. 30.
    Chen Y, Yan C, Schmidt OG. Adv Energy Mater, 2013, 3: 1269–1274CrossRefGoogle Scholar
  31. 31.
    Jia H, Kloepsch R, He X, Badillo JP, Winter M, Placke T. J Mater Chem A, 2014, 2: 17545–17550CrossRefGoogle Scholar
  32. 32.
    Ngo DT, Kalubarme RS, Le HTT, Park CN, Park CJ. Nanoscale, 2015, 7: 2552–2560CrossRefGoogle Scholar
  33. 33.
    Wang XL, Han WQ, Chen H, Bai J, Tyson TA, Yu XQ, Wang XJ, Yang XQ. J Am Chem Soc, 2011, 133: 20692–20695CrossRefGoogle Scholar
  34. 34.
    Fang Z, Qiang T, Fang J, Song Y, Ma Q, Ye M, Qiang F, Geng B. Electrochim Acta, 2015, 151: 453–458CrossRefGoogle Scholar
  35. 35.
    Jin S, Li N, Cui H, Wang C. Nano Energy, 2013, 2: 1128–1136CrossRefGoogle Scholar
  36. 36.
    Chen Z, Yan Y, Xin S, Li W, Qu J, Guo YG, Song WG. J Mater Chem A, 2013, 1: 11404CrossRefGoogle Scholar
  37. 37.
    Li W, Yin YX, Xin S, Song WG, Guo YG. Energy Environ Sci, 2012, 5: 8007CrossRefGoogle Scholar
  38. 38.
    Rahman MM, Sultana I, Yang T, Chen Z, Sharma N, Glushenkov AM, Chen Y. Angew Chem Int Ed, 2016, 55: 16059–16063CrossRefGoogle Scholar
  39. 39.
    Jin S, Yang G, Song H, Cui H, Wang C. ACS Appl Mater Interfaces, 2015, 7: 24932–24943CrossRefGoogle Scholar
  40. 40.
    Yi R, Feng J, Lv D, Gordin ML, Chen S, Choi D, Wang D. Nano Energy, 2013, 2: 498–504CrossRefGoogle Scholar
  41. 41.
    Schroder KW, Celio H, Webb LJ, Stevenson KJ. J Phys Chem C, 2012, 116: 19737–19747Google Scholar
  42. 42.
    Mei L, Mao M, Chou S, Liu H, Dou S, Ng DHL, Ma J. J Mater Chem A, 2015, 3: 21699–21705CrossRefGoogle Scholar
  43. 43.
    Li M, Zhou D, Song WL, Li X, Fan LZ. J Mater Chem A, 2015, 3: 19907–19912CrossRefGoogle Scholar
  44. 44.
    Yang J, Wang H, Hu P, Qi J, Guo L, Wang L. Small, 2015, 11: 3744–3749CrossRefGoogle Scholar
  45. 45.
    Javadi M, Yang Z, Veinot JGC. Chem Commun, 2014, 50: 6101–6104CrossRefGoogle Scholar
  46. 46.
    Zhang J, Yu T, Chen J, Liu H, Su D, Tang Z, Xie J, Chen L, Yuan A, Kong Q. Ceram Int, 2018, 44: 1127–1133CrossRefGoogle Scholar
  47. 47.
    Sun Y, Xu W, Fu X, Sun Z, Wang J, Zhang J, Rosenbach D, Qi R, Jiang K, Jing C, Hu Z, Ma X, Chu J. J Mater Chem C, 2017, 5: 12792–12799CrossRefGoogle Scholar
  48. 48.
    Song H, Zhao B, Yan S, Li K, Xu X, Shi Y. J Nanosci Nanotechnol, 2017, 17: 9036–9041CrossRefGoogle Scholar
  49. 49.
    Ngo DT, Le HTT, Kalubarme RS, Lee JY, Park CN, Park CJ. J Mater Chem A, 2015, 3: 21722–21732CrossRefGoogle Scholar
  50. 50.
    Choi SH, Jung KY, Kang YC. ACS Appl Mater Interfaces, 2015, 7: 13952–13959CrossRefGoogle Scholar
  51. 51.
    Zou F, Hu X, Qie L, Jiang Y, Xiong X, Qiao Y, Huang Y. Nanoscale, 2014, 6: 924–930CrossRefGoogle Scholar
  52. 52.
    Wei W, Jia F, Wang K, Luo B, Qu P, Xu M. Mater Lett, 2017, 196: 157–160CrossRefGoogle Scholar
  53. 53.
    Xu MF, Shi XB, Jin ZM, Zu FS, Liu Y, Zhang L, Wang ZK, Liao LS. ACS Appl Mater Interfaces, 2013, 5: 10866–10873CrossRefGoogle Scholar
  54. 54.
    Wang ZK, Li M, Yuan DX, Shi XB, Ma H, Liao LS. ACS Appl Mater Interfaces, 2015, 7: 9645–9651CrossRefGoogle Scholar
  55. 55.
    Viswanathamurthi P, Bhattarai N, Kim HY, Khil MS, Lee DR, Suh EK. J Chem Phys, 2004, 121: 441–445CrossRefGoogle Scholar
  56. 56.
    Armelao L, Heigl F, Kim PSG, Rosenberg RA, Regier TZ, Sham TK. J Phys Chem C, 2012, 116: 14163–14169Google Scholar
  57. 57.
    Zou X, Liu B, Li Q, Li Z, Liu B, Wu W, Zhao Q, Sui Y, Li D, Zou B, Cui T, Zou G, Mao HK. CrystEngComm, 2011, 13: 979–984CrossRefGoogle Scholar
  58. 58.
    Zhang W, Pang H, Sun W, Lv LP, Wang Y. Electrochem Commun, 2017, 84: 80–85CrossRefGoogle Scholar
  59. 59.
    Wu HP, Liu JF, Ge MY, Niu L, Zeng YW, Wang YW, Lv GL, Wang LN, Zhang GQ, Jiang JZ. Chem Mater, 2006, 18: 1817–1820CrossRefGoogle Scholar
  60. 60.
    Chen X, Cai Q, Zhang J, Chen Z, Wang W, Wu Z, Wu Z. Mater Lett, 2007, 61: 535–537CrossRefGoogle Scholar
  61. 61.
    Chiu YW, Huang MH. J Phys Chem C, 2009, 113: 6056–6060CrossRefGoogle Scholar
  62. 62.
    Liu W, Jiang J, Wang H, Deng C, Wang F, Peng G. J Energy Chem, 2016, 25: 817–824CrossRefGoogle Scholar
  63. 63.
    Medvedev AG, Mikhaylov AA, Grishanov DA, Yu DYW, Gun J, Sladkevich S, Lev O, Prikhodchenko PV. ACS Appl Mater Interfaces, 2017, 9: 9152–9160CrossRefGoogle Scholar
  64. 64.
    Jahel A, Darwiche A, Matei Ghimbeu C, Vix-Guterl C, Monconduit L. J Power Sources, 2014, 269: 755–759CrossRefGoogle Scholar
  65. 65.
    Qiu H, Zeng L, Lan T, Ding X, Wei M. J Mater Chem A, 2015, 3: 1619–1623CrossRefGoogle Scholar
  66. 66.
    Wei X, Li W, Zeng L, Yu Y. Part Part Syst Charact, 2016, 33: 524–530CrossRefGoogle Scholar
  67. 67.
    Jia F, Song L, Wei W, Qu P, Xu M. New J Chem, 2015, 39: 689–695CrossRefGoogle Scholar
  68. 68.
    Xu R, Wu S, Du Y, Zhang Z. Chem Eng J, 2016, 296: 349–355CrossRefGoogle Scholar
  69. 69.
    Yoon S, Jung SH, Jung KN, Woo SG, Cho W, Jo YN, Cho KY. Electrochim Acta, 2016, 188: 120–125CrossRefGoogle Scholar
  70. 70.
    Zeng L, Huang X, Chen X, Zheng C, Qian Q, Chen Q, Wei M. ACS Appl Mater Interfaces, 2016, 8: 232–239CrossRefGoogle Scholar
  71. 71.
    Lei D, Qu B, Lin HT, Wang T. Ceram Int, 2015, 41: 10308–10313CrossRefGoogle Scholar
  72. 72.
    Hwang J, Jo C, Kim MG, Chun J, Lim E, Kim S, Jeong S, Kim Y, Lee J. ACS Nano, 2015, 9: 5299–5309CrossRefGoogle Scholar
  73. 73.
    Kajita T, Itoh T. J Electrochem Soc, 2016, 163: A552–A556CrossRefGoogle Scholar
  74. 74.
    Kajita T, Itoh T. RSC Adv, 2016, 6: 102109–102115CrossRefGoogle Scholar
  75. 75.
    Lv D, Gordin ML, Yi R, Xu T, Song J, Jiang YB, Choi D, Wang D. Adv Funct Mater, 2014, 24: 1059–1066CrossRefGoogle Scholar
  76. 76.
    Ma Q, Ye M, Zeng P, Wang X, Geng B, Fang Z. RSC Adv, 2016, 6: 15952–15959CrossRefGoogle Scholar
  77. 77.
    Li W, Wang X, Liu B, Luo S, Liu Z, Hou X, Xiang Q, Chen D, Shen G. Chem Eur J, 2013, 19: 8650–8656CrossRefGoogle Scholar
  78. 78.
    Chen Y, Lin Y, Du N, Xiao C, Wu S, Zhang Y, Yang D. Energy Technol, 2017, 5: 1656–1662CrossRefGoogle Scholar
  79. 79.
    Ding C, Zhao Y, Yan D, Su D, Zhao Y, Zhou H, Li J, Jin H. Electrochim Acta, 2017, 251: 129–136CrossRefGoogle Scholar
  80. 80.
    Liu W, Zhou T, Zheng Y, Liu J, Feng C, Shen Y, Huang Y, Guo Z. ACS Appl Mater Interfaces, 2017, 9: 9778–9784CrossRefGoogle Scholar
  81. 81.
    Li HH, Wu XL, Zhang LL, Fan CY, Wang HF, Li XY, Sun HZ, Zhang JP, Yan Q. ACS Appl Mater Interfaces, 2016, 8: 31722–31728CrossRefGoogle Scholar
  82. 82.
    Choi SH, Kim JH, Choi YJ, Kang YC. Electrochim Acta, 2016, 190: 766–774CrossRefGoogle Scholar
  83. 83.
    Wang W, Qin J, Cao M. ACS Appl Mater Interfaces, 2016, 8: 1388–1397CrossRefGoogle Scholar
  84. 84.
    Wu S, Wang R, Wang Z, Lin Z. Nanoscale, 2014, 6: 8350–8358CrossRefGoogle Scholar
  85. 85.
    Li W, Chen D, Shen G. J Mater Chem A, 2015, 3: 20673–20680CrossRefGoogle Scholar
  86. 86.
    Zou F, Hu X, Sun Y, Luo W, Xia F, Qie L, Jiang Y, Huang Y. Chem Eur J, 2013, 19: 6027–6033CrossRefGoogle Scholar
  87. 87.
    Li D, Feng C, Liu HK, Guo Z. Sci Rep, 2015, 5: 11326CrossRefGoogle Scholar
  88. 88.
    Liu X, Wang J, Liu X, Chi C, Liu S, Zhao J, Li Y. J Electroanal Chem, 2016, 783: 15–21CrossRefGoogle Scholar
  89. 89.
    Liu X, Ma X, Wang J, Liu X, Chi C, Liu S, Zhao J, Li Y. RSC Adv, 2016, 6: 107040–107048CrossRefGoogle Scholar
  90. 90.
    Ge R, Wu S, Du Y, Zhou W, Zhang Z. Carbon, 2016, 107: 352–360CrossRefGoogle Scholar
  91. 91.
    Wang L, Zhang X, Shen G, Peng X, Zhang M, Xu J. Nanotechnology, 2016, 27: 095602CrossRefGoogle Scholar
  92. 92.
    Feng J, Ci L, Qi Y, Lun N, Xiong S, Qian Y. Mater Res Bull, 2014, 57: 238–242CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henan Key Laboratory of Biomolecular Recognition and Sensing, School of Chemistry and Chemical EngineeringShangqiu Normal UniversityShangqiuChina
  2. 2.School of ChemistryBeihang UniversityBeijingChina

Personalised recommendations