Science China Chemistry

, Volume 61, Issue 10, pp 1293–1300 | Cite as

Photocaged prodrug under NIR light-triggering with dual-channel fluorescence: in vivo real-time tracking for precise drug delivery

  • Zhiqian Guo
  • Yaguang Ma
  • Yajing Liu
  • Chenxu Yan
  • Ping Shi
  • He Tian
  • Wei-Hong ZhuEmail author


Light-triggered drug delivery system is an effective strategy for precise diagnosis and therapy in cancer treatment. However, it suffers from difficultly balancing the dosimetry of drug with light dose and a lack of in vivo models for validating their clinical benefits. Here we report an unprecedented near-infrared (NIR) light photocaged cyanine-based prodrug Cy-CPT-Biotin with dual-channel fluorescence mode, enabling NIR light to precisely regulate where, when and how the intact and active prodrugs are delivered. The synergy of photochemical reaction and modulation in π-conjugated polyene backbone of cyanine can fully perform distinct dual-channel fluorescence changes in a NIR light-mediated manner. The prodrug has striking characteristics of excellent tumor-targeting ability, real-time monitoring of the in vivo behaviors by dual-channel mode and NIR-light triggering, especially for achieving fine regulation and on-demand drug release in the precise dosimetry of drug with light dose in living animals. This optical orthogonality strategy that conjuncts with NIR light-triggered and dual-channel fluorescence in vivo imaging provides a powerful tool for in vivo real-time tracking and finely tuning the prodrug release for precise drug delivery.


near-infrared cyanine dye dual-channel fluorescence drug-release photocage tumor targeting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by The National Natural Science Foundation of China (21788102, 21421004, 21636002, 21622602), National Key Research and Development Program (2016YFA0200300), Scientific Committee of Shanghai (14ZR1409700, 15XD1501400), Fok Ying Tong Education Foundation (142014), and Program of Introducing Talents of Discipline to Universities (B16017).

Supplementary material

11426_2018_9240_MOESM1_ESM.docx (5.1 mb)
Photocaged prodrug under NIR light-triggering with dual-channel fluorescence: in vivo real-time tracking for precise drug delivery


  1. 1.
    Chabner BA, Roberts TG. Nat Rev Cancer, 2005, 5: 65–72CrossRefPubMedGoogle Scholar
  2. 2.
    Lee MH, Sessler JL, Kim JS. Acc Chem Res, 2015, 48: 2935–2946CrossRefPubMedGoogle Scholar
  3. 3.
    Shi J, Kantoff PW, Wooster R, Farokhzad OC. Nat Rev Cancer, 2017, 17: 20–37CrossRefPubMedGoogle Scholar
  4. 4.
    Mura S, Nicolas J, Couvreur P. Nat Mater, 2013, 12: 991–1003CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen G, Roy I, Yang C, Prasad PN. Chem Rev, 2016, 116: 2826–2885CrossRefPubMedGoogle Scholar
  6. 6.
    Kumar R, Shin WS, Sunwoo K, Kim WY, Koo S, Bhuniya S, Kim JS. Chem Soc Rev, 2015, 44: 6670–6683CrossRefPubMedGoogle Scholar
  7. 7.
    Kojima R, Aubel D, Fussenegger M. Curr Opin Chem Biol, 2015, 28: 29–38CrossRefPubMedGoogle Scholar
  8. 8.
    Low PS, Henne WA, Doorneweerd DD. Acc Chem Res, 2008, 41: 120–129CrossRefPubMedGoogle Scholar
  9. 9.
    Kolemen S, Işık M, Kim GM, Kim D, Geng H, Buyuktemiz M, Karatas T, Zhang XF, Dede Y, Yoon J, Akkaya EU. Angew Chem Int Ed, 2015, 54: 5340–5344CrossRefGoogle Scholar
  10. 10.
    Lee MH, Kim EJ, Lee H, Kim HM, Chang MJ, Park SY, Hong KS, Kim JS, Sessler JL. J Am Chem Soc, 2016, 138: 16380–16387CrossRefPubMedGoogle Scholar
  11. 11.
    Qiu N, Liu X, Zhong Y, Zhou Z, Piao Y, Miao L, Zhang Q, Tang J, Huang L, Shen Y. Adv Mater, 2016, 28: 10613–10622CrossRefPubMedGoogle Scholar
  12. 12.
    Zhou Z, Ma X, Murphy CJ, Jin E, Sun Q, Shen Y, Van Kirk EA, Murdoch WJ. Angew Chem Int Ed, 2014, 53: 10949–10955CrossRefGoogle Scholar
  13. 13.
    Ellis-Davies GCR. Nat Methods, 2007, 4: 619–628CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bao C, Zhu L, Lin Q, Tian H. Adv Mater, 2015, 27: 1647–1662CrossRefPubMedGoogle Scholar
  15. 15.
    Rwei AY, Wang W, Kohane DS. Nano Today, 2015, 10: 451–467CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gorka AP, Schnermann MJ. Curr Opin Chem Biol, 2016, 33: 117–125CrossRefPubMedGoogle Scholar
  17. 17.
    Escobedo JO, Rusin O, Lim S, Strongin RM. Curr Opin Chem Biol, 2010, 14: 64–70CrossRefPubMedGoogle Scholar
  18. 18.
    Hilderbrand SA, Weissleder R. Curr Opin Chem Biol, 2010, 14: 71–79CrossRefPubMedGoogle Scholar
  19. 19.
    Guo Z, Park S, Yoon J, Shin I. Chem Soc Rev, 2014, 43: 16–29CrossRefPubMedGoogle Scholar
  20. 20.
    Yang Z, Lee JH, Jeon HM, Han JH, Park N, He Y, Lee H, Hong KS, Kang C, Kim JS. J Am Chem Soc, 2013, 135: 11657–11662CrossRefPubMedGoogle Scholar
  21. 21.
    Yin J, Kwon Y, Kim D, Lee D, Kim G, Hu Y, Ryu JH, Yoon J. J Am Chem Soc, 2014, 136: 5351–5358CrossRefPubMedGoogle Scholar
  22. 22.
    Lim SY, Hong KH, Kim DI, Kwon H, Kim HJ. J Am Chem Soc, 2014, 136: 7018–7025CrossRefPubMedGoogle Scholar
  23. 23.
    Gu X, Zhao E, Zhao T, Kang M, Gui C, Lam JWY, Du S, Loy MMT, Tang BZ. Adv Mater, 2016, 28: 5064–5071CrossRefPubMedGoogle Scholar
  24. 24.
    Wu X, Li L, Shi W, Gong Q, Ma H. Angew Chem Int Ed, 2016, 55: 14728–14732CrossRefGoogle Scholar
  25. 25.
    Wu X, Sun X, Guo Z, Tang J, Shen Y, James TD, Tian H, Zhu W. J Am Chem Soc, 2014, 136: 3579–3588CrossRefPubMedGoogle Scholar
  26. 26.
    Ye M, Wang X, Tang J, Guo Z, Shen Y, Tian H, Zhu WH. Chem Sci, 2016, 7: 4958–4965CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Delaey E, van Laar F, De Vos D, Kamuhabwa A, Jacobs P, de Witte P. J Photochem Photobiol B, 2000, 55: 27–36CrossRefPubMedGoogle Scholar
  28. 28.
    Samanta A, Vendrell M, Das R, Chang YT. Chem Commun, 2010, 46: 7406–7408CrossRefGoogle Scholar
  29. 29.
    Gorka AP, Nani RR, Zhu J, Mackem S, Schnermann MJ. J Am Chem Soc, 2014, 136: 14153–14159CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nani RR, Gorka AP, Nagaya T, Kobayashi H, Schnermann MJ. Angew Chem Int Ed, 2015, 54: 13635–13638CrossRefGoogle Scholar
  31. 31.
    Yang G, Liu J, Wu Y, Feng L, Liu Z. Coordin Chem Rev, 2016, 320–321: 100–117CrossRefGoogle Scholar
  32. 32.
    Liu J, Bu W, Pan L, Shi J. Angew Chem Int Ed, 2013, 52: 4375–4379CrossRefGoogle Scholar
  33. 33.
    Truman LK, Comby S, Gunnlaugsson T. Angew Chem Int Ed, 2012, 51: 9624–9627CrossRefGoogle Scholar
  34. 34.
    Jung HS, Han J, Lee JH, Lee JH, Choi JM, Kweon HS, Han JH, Kim JH, Byun KM, Jung JH, Kang C, Kim JS. J Am Chem Soc, 2015, 137: 3017–3023CrossRefPubMedGoogle Scholar
  35. 35.
    Shell TA, Shell JR, Rodgers ZL, Lawrence DS. Angew Chem Int Ed, 2014, 53: 875–878CrossRefGoogle Scholar
  36. 36.
    Zhang P, Wang C, Zhao J, Xiao A, Shen Q, Li L, Li J, Zhang J, Min Q, Chen J, Chen HY, Zhu JJ. ACS Nano, 2016, 10: 3637–3647CrossRefPubMedGoogle Scholar
  37. 37.
    An X, Zhu A, Luo H, Ke H, Chen H, Zhao Y. ACS Nano, 2016, 10: 5947–5958CrossRefPubMedGoogle Scholar
  38. 38.
    Lin Q, Bao C, Yang Y, Liang Q, Zhang D, Cheng S, Zhu L. Adv Mater, 2013, 25: 1981–1986CrossRefPubMedGoogle Scholar
  39. 39.
    Yan B, Boyer JC, Habault D, Branda NR, Zhao Y. J Am Chem Soc, 2012, 134: 16558–16561CrossRefPubMedGoogle Scholar
  40. 40.
    Liu LH, Qiu WX, Li B, Zhang C, Sun LF, Wan SS, Rong L, Zhang XZ. Adv Funct Mater, 2016, 26: 6257–6269CrossRefGoogle Scholar
  41. 41.
    Yao C, Wang P, Li X, Hu X, Hou J, Wang L, Zhang F. Adv Mater, 2016, 28: 9341–9348CrossRefPubMedGoogle Scholar
  42. 42.
    Thapa P, Li M, Bio M, Rajaputra P, Nkepang G, Sun Y, Woo S, You Y. J Med Chem, 2016, 59: 3204–3214CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Palao E, Slanina T, Muchová L, Šolomek T, Vítek L, Klán P. J Am Chem Soc, 2016, 138: 126–133CrossRefPubMedGoogle Scholar
  44. 44.
    Russell-Jones G, McTavish K, McEwan J, Rice J, Nowotnik D. J Inorg Biochem, 2004, 98: 1625–1633CrossRefPubMedGoogle Scholar
  45. 45.
    Guo Z, Zhu W, Zhu M, Wu X, Tian H. Chem Eur J, 2010, 16: 14424–14432CrossRefPubMedGoogle Scholar
  46. 46.
    Jia X, Chen Q, Yang Y, Tang Y, Wang R, Xu Y, Zhu W, Qian X. J Am Chem Soc, 2016, 138: 10778–10781CrossRefPubMedGoogle Scholar
  47. 47.
    Li Y, Sun Y, Li J, Su Q, Yuan W, Dai Y, Han C, Wang Q, Feng W, Li F. J Am Chem Soc, 2015, 137: 6407–6416CrossRefPubMedGoogle Scholar
  48. 48.
    Guo Z, Nam SW, Park S, Yoon J. Chem Sci, 2012, 3: 2760–2765CrossRefGoogle Scholar
  49. 49.
    Li X, Kim CY, Lee S, Lee D, Chung HM, Kim G, Heo SH, Kim C, Hong KS, Yoon J. J Am Chem Soc, 2017, 139: 10880–10886CrossRefPubMedGoogle Scholar
  50. 50.
    Peng X, Song F, Lu E, Wang Y, Zhou W, Fan J, Gao Y. J Am Chem Soc, 2005, 127: 4170–4171CrossRefPubMedGoogle Scholar
  51. 51.
    Gopin A, Pessah N, Shamis M, Rader C, Shabat D. Angew Chem Int Ed, 2003, 42: 327–332CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Zhiqian Guo
    • 1
  • Yaguang Ma
    • 1
  • Yajing Liu
    • 2
  • Chenxu Yan
    • 1
  • Ping Shi
    • 2
  • He Tian
    • 1
  • Wei-Hong Zhu
    • 1
    Email author
  1. 1.Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations