Advertisement

Science China Chemistry

, Volume 61, Issue 6, pp 656–659 | Cite as

Phosphine oxide-Sc(OTf)3 catalyzed enantioselective bromoaminocyclization of tri-substituted allyl N-tosylcarbamates

Communications
  • 40 Downloads

Abstract

Phosphine oxide-Sc(OTf)3 catalyzed regio- and enantioselective bromoaminocyclization of tri-substituted allyl N-tosylcarbamates is described. A wide variety of optically active tertiary 5-bromo-1,3-oxazinan-2-ones can be obtained with high regio-and enantioselectivity.

Keywords

asymmetric bromonation bromoaminocyclization phosphine oxide-Sc(OTf)3 5-bromo-1,3-oxazinan-2-ones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21632005, 21172221).

Supplementary material

11426_2017_9192_MOESM1_ESM.pdf (3 mb)
Phosphine Oxide-Sc(OTf)3 Catalyzed Enantioselective Bromoaminocyclization of tri-Substituted Allyl N-Tosylcarbamates

References

  1. 1.
    (a) Chen G, Ma S. Angew Chem Int Ed, 2010, 49: 8306–8308CrossRefGoogle Scholar
  2. (b).
    Castellanos A, Fletcher SP. Chem Eur J, 2011, 17: 5766–5776CrossRefGoogle Scholar
  3. (c).
    Tan C, Zhou L, Yeung YY. Synlett, 2011, 2011: 1335–1339CrossRefGoogle Scholar
  4. (d).
    Hennecke U. Chem Asian J, 2012, 7: 456–465CrossRefGoogle Scholar
  5. (e).
    Denmark SE, Kuester WE, Burk MT. Angew Chem Int Ed, 2012, 51: 10938–10953CrossRefGoogle Scholar
  6. (f).
    Fujioka H, Murai K. Heterocycles, 2013, 87: 763–805CrossRefGoogle Scholar
  7. (g).
    Chemler SR, Bovino MT. ACS Catal, 2013, 3: 1076–1091CrossRefGoogle Scholar
  8. (h).
    Tan CK, Yeung YY. Chem Commun, 2013, 49: 7985–7996CrossRefGoogle Scholar
  9. (i).
    Tripathi CB, Mukherjee S. Synlett, 2014, 25: 163–169Google Scholar
  10. (j).
    Chen J, Zhou L. Synthesis, 2014, 46: 586–595CrossRefGoogle Scholar
  11. (k).
    Zheng S, Schienebeck CM, Zhang W, Wang HY, Tang W. Asian J Org Chem, 2014, 3: 366–376CrossRefGoogle Scholar
  12. (l).
    Liang XW, Zheng C, You SL. Chem Eur J, 2016, 22: 11918–11933CrossRefGoogle Scholar
  13. (m).
    Gieuw MH, Ke Z, Yeung YY. Chem Rec, 2017, 17: 287–311CrossRefGoogle Scholar
  14. 2.
    (a) Inoue T, Kitagawa O, Ochiai O, Shiro M, Taguchi T. Tetrahedron Lett, 1995, 36: 9333–9336CrossRefGoogle Scholar
  15. (b).
    Inoue T, Kitagawa O, Saito A, Taguchi T. J Org Chem, 1997, 62: 7384–7389CrossRefGoogle Scholar
  16. (c).
    Kang SH, Lee SB, Park CM. J Am Chem Soc, 2003, 125: 15748–15749CrossRefGoogle Scholar
  17. (d).
    Kwon HY, Park CM, Lee SB, Youn JH, Kang SH. Chem Eur J, 2008, 14: 1023–1028CrossRefGoogle Scholar
  18. (e).
    Ning Z, Jin R, Ding J, Gao L. Synlett, 2009, 2009: 2291–2294CrossRefGoogle Scholar
  19. (f).
    Miles DH, Veguillas M, Toste FD. Chem Sci, 2013, 4: 3427CrossRefGoogle Scholar
  20. (g).
    Filippova L, Stenstrøm Y, Hansen TV. Tetrahedron Lett, 2014, 55: 419–422CrossRefGoogle Scholar
  21. (h).
    Arai T, Sugiyama N, Masu H, Kado S, Yabe S, Yamanaka M. Chem Commun, 2014, 50: 8287–8290CrossRefGoogle Scholar
  22. (i).
    Zhu CL, Tian JS, Gu ZY, Xing GW, Xu H. Chem Sci, 2015, 6: 3044–3050CrossRefGoogle Scholar
  23. (j).
    Cai Y, Zhou P, Liu X, Zhao J, Lin L, Feng X. Chem Eur J, 2015, 21: 6386–6389CrossRefGoogle Scholar
  24. (k).
    Arai T, Watanabe O, Yabe S, Yamanaka M. Angew Chem Int Ed, 2015, 54: 12767–12771CrossRefGoogle Scholar
  25. 3.
    (a) Li G, Wei HX, Kim SH. Tetrahedron, 2001, 57: 8407–8411CrossRefGoogle Scholar
  26. (b).
    Cai Y, Liu X, Hui Y, Jiang J, Wang W, Chen W, Lin L, Feng X. Angew Chem Int Ed, 2010, 49: 6160–6164CrossRefGoogle Scholar
  27. (c).
    Hu DX, Shibuya GM, Burns NZ. J Am Chem Soc, 2013, 135: 12960–12963CrossRefGoogle Scholar
  28. (d).
    Hu DX, Seidl FJ, Bucher C, Burns NZ. J Am Chem Soc, 2015, 137: 3795–3798CrossRefGoogle Scholar
  29. (e).
    Zhou P, Lin L, Chen L, Zhong X, Liu X, Feng X. J Am Chem Soc, 2017, 139: 13414–13419CrossRefGoogle Scholar
  30. 4.
    (a) Wang M, Gao LX, Mai WP, Xia AX, Wang F, Zhang SB. J Org Chem, 2004, 69: 2874–2876CrossRefGoogle Scholar
  31. (b).
    Sakakura A, Ukai A, Ishihara K. Nature, 2007, 445: 900–903CrossRefGoogle Scholar
  32. (c).
    Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J Am Chem Soc, 2010, 132: 3298–3300CrossRefGoogle Scholar
  33. (d).
    Zhang W, Zheng S, Liu N, Werness JB, Guzei IA, Tang W. J Am Chem Soc, 2010, 132: 3664–3665CrossRefGoogle Scholar
  34. (e).
    Veitch GE, Jacobsen EN. Angew Chem Int Ed, 2010, 49: 7332–7335CrossRefGoogle Scholar
  35. (f).
    Murai K, Matsushita T, Nakamura A, Fukushima S, Shimura M, Fujioka H. Angew Chem Int Ed, 2010, 49: 9174–9177CrossRefGoogle Scholar
  36. (g).
    Zhou L, Tan CK, Jiang X, Chen F, Yeung YY. J Am Chem Soc, 2010, 132: 15474–15476CrossRefGoogle Scholar
  37. (h).
    Chen ZM, Zhang QW, Chen ZH, Li H, Tu YQ, Zhang FM, Tian JM. J Am Chem Soc, 2011, 133: 8818–8821CrossRefGoogle Scholar
  38. (i).
    Lozano O, Blessley G, Martinez del Campo T, Thompson AL, Giuffredi GT, Bettati M, Walker M, Borman R, Gouverneur V. Angew Chem Int Ed, 2011, 50: 8105–8109CrossRefGoogle Scholar
  39. (j).
    Müller C, Wilking M, Rühlmann A, Wibbeling B, Hennecke U. Synlett, 2011, 2011: 2043–2047CrossRefGoogle Scholar
  40. (k).
    Dobish MC, Johnston JN. J Am Chem Soc, 2012, 134: 6068–6071CrossRefGoogle Scholar
  41. (l).
    Paull DH, Fang C, Donald JR, Pansick AD, Martin SF. J Am Chem Soc, 2012, 134: 11128–11131CrossRefGoogle Scholar
  42. (m).
    Tungen JE, Nolsøe JMJ, Hansen TV. Org Lett, 2012, 14: 5884–5887CrossRefGoogle Scholar
  43. (n).
    Ikeuchi K, Ido S, Yoshimura S, Asakawa T, Inai M, Hamashima Y, Kan T. Org Lett, 2012, 14: 6016–6019CrossRefGoogle Scholar
  44. (o).
    Zeng X, Miao C, Wang S, Xia C, Sun W. Chem Commun, 2013, 49: 2418–2420CrossRefGoogle Scholar
  45. (p).
    Tripathi CB, Mukherjee S. Angew Chem Int Ed, 2013, 52: 8450–8453CrossRefGoogle Scholar
  46. (q).
    Yin Q, You SL. Org Lett, 2013, 15: 4266–4269CrossRefGoogle Scholar
  47. (r).
    Armstrong A, Braddock DC, Jones AX, Clark S. Tetrahedron Lett, 2013, 54: 7004–7008CrossRefGoogle Scholar
  48. (s).
    Han X, Dong C, Zhou HB. Adv Synth Catal, 2014, 356: 1275–1280CrossRefGoogle Scholar
  49. (t).
    Mizar P, Burrelli A, Günther E, Söftje M, Farooq U, Wirth T. Chem Eur J, 2014, 20: 13113–13116CrossRefGoogle Scholar
  50. (u).
    Samanta RC, Yamamoto H. J Am Chem Soc, 2017, 139: 1460–1463CrossRefGoogle Scholar
  51. 5.
    (a) Nicolaou KC, Simmons NL, Ying Y, Heretsch PM, Chen JS. J Am Chem Soc, 2011, 133: 8134–8137CrossRefGoogle Scholar
  52. (b).
    Zhang W, Liu N, Schienebeck CM, Zhou X, Izhar II, Guzei IA, Tang W. Chem Sci, 2013, 4: 2652–2656CrossRefGoogle Scholar
  53. (c).
    Zhang Y, Xing H, Xie W, Wan X, Lai Y, Ma D. Adv Synth Catal, 2013, 355: 68–72CrossRefGoogle Scholar
  54. (d).
    Li L, Su C, Liu X, Tian H, Shi Y. Org Lett, 2014, 16: 3728–3731CrossRefGoogle Scholar
  55. (e).
    Qi J, Fan GT, Chen J, Sun MH, Dong YT, Zhou L. Chem Commun, 2014, 50: 13841–13844CrossRefGoogle Scholar
  56. (f).
    Zhang X, Li J, Tian H, Shi Y. Chem Eur J, 2015, 21: 11658–11663CrossRefGoogle Scholar
  57. (g).
    Soltanzadeh B, Jaganathan A, Staples RJ, Borhan B. Angew Chem Int Ed, 2015, 54: 9517–9522CrossRefGoogle Scholar
  58. 6.
    (a) Hennecke U, Muller CH, Frohlich R. Org Lett, 2011, 13: 860–863CrossRefGoogle Scholar
  59. (b).
    Rauniyar V, Lackner AD, Hamilton GL, Toste FD. Science, 2011, 334: 1681–1684CrossRefGoogle Scholar
  60. (c).
    Huang D, Wang H, Xue F, Guan H, Li L, Peng X, Shi Y. Org Lett, 2011, 13: 6350–6353CrossRefGoogle Scholar
  61. (d).
    Denmark SE, Burk MT. Org Lett, 2012, 14: 256–259CrossRefGoogle Scholar
  62. (e).
    Wang YM, Wu J, Hoong C, Rauniyar V, Toste FD. J Am Chem Soc, 2012, 134: 12928–12931CrossRefGoogle Scholar
  63. (f).
    Romanov-Michailidis F, Guénée L, Alexakis A. Angew Chem Int Ed, 2013, 52: 9266–9270CrossRefGoogle Scholar
  64. (g).
    Romanov-Michailidis F, Guénée L, Alexakis A. Org Lett, 2013, 15: 5890–5893CrossRefGoogle Scholar
  65. (h).
    Xie W, Jiang G, Liu H, Hu J, Pan X, Zhang H, Wan X, Lai Y, Ma D. Angew Chem Int Ed, 2013, 52: 12924–12927CrossRefGoogle Scholar
  66. (i).
    Liu H, Jiang G, Pan X, Wan X, Lai Y, Ma D, Xie W. Org Lett, 2014, 16: 1908–1911CrossRefGoogle Scholar
  67. (j).
    Müller CH, Rösner C, Hennecke U. Chem Asian J, 2014, 9: 2162–2169CrossRefGoogle Scholar
  68. (k).
    Romanov-Michailidis F, Romanova-Michaelides M, Pupier M, Alexakis A. Chem Eur J, 2015, 21: 5561–5583CrossRefGoogle Scholar
  69. 7.
    (a) Li G, Fu Q, Zhang X, Jiang J, Tang Z. Tetrahedron-Asymmetry, 2012, 23: 245–251CrossRefGoogle Scholar
  70. (b).
    Alix A, Lalli C, Retailleau P, Masson G. J Am Chem Soc, 2012, 134: 10389–10392CrossRefGoogle Scholar
  71. (c).
    Honjo T, Phipps RJ, Rauniyar V, Toste FD. Angew Chem Int Ed, 2012, 51: 9684–9688CrossRefGoogle Scholar
  72. 8.
    Trost BM, Van Vranken DL, Bingel C. J Am Chem Soc, 1992, 114: 9327–9343CrossRefGoogle Scholar
  73. 9.
    (a) Huang D, Liu X, Li L, Cai Y, Liu W, Shi Y. J Am Chem Soc, 2013, 135: 8101–8104CrossRefGoogle Scholar
  74. (b).
    Huang H, Pan H, Cai Y, Liu M, Tian H, Shi Y. Org Biomol Chem, 2015, 13: 3566–3570CrossRefGoogle Scholar
  75. (c).
    Pan H, Huang H, Liu W, Tian H, Shi Y. Org Lett, 2016, 18: 896–899CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiangyu Tan
    • 1
    • 2
  • Hongjie Pan
    • 1
    • 2
  • Hua Tian
    • 1
    • 2
  • Yian Shi
    • 3
    • 4
  1. 1.Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of ChemistryChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Institute of Natural and Synthetic Organic ChemistryChangzhou UniversityChangzhouChina
  4. 4.Department of ChemistryColorado State UniversityFort CollinsUSA

Personalised recommendations