Advertisement

Science China Chemistry

, Volume 61, Issue 5, pp 604–612 | Cite as

GMP-quadruplex-based hydrogels stabilized by lanthanide ions

  • Jin Zhang
  • Xiaoyang Li
  • Xiuping Sun
  • Aixin Song
  • Yebang Tan
  • Jingcheng Hao
Articles
  • 61 Downloads

Abstract

This work describes the gelation behaviors and properties of a biological molecule, guanosine 5′-monophosphate disodium salt (GMP), in the presence of trivalent lanthanide ions. Hydrogels composed of GMP-quadruplexes were prepared by adjusting pH, through which the protonation of phosphate group was controlled to tune the interactions between lanthanide ions and GMP. Within the pH region of 2–6, the electrostatic interaction between lanthanide ions and phosphate group is hindered and the cation-dipole interaction acts as the main driving force for the formation of G-quadruplexes. All the hydrogels were found consisting of three-dimensional network of the intertwining one-dimensional nanofibers formed by the stacking G-quartets induced by lanthanide ions. A significant fluorescence enhancement of thioflavin T (ThT), a fluorescent molecule, was found to be triggered by the G-quadruplex structures, for which the rotation of chromophoric groups on ThT molecules were prohibited due to the implant into the G-quadruplex structures.

Keywords

G-quadruplex hydrogel hydrogen bonding electrostatic interaction ion-dipole interaction fluorescence enhancement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21573134, 21420102006).

References

  1. 1.
    Zhao F, Ma ML, Xu B. Chem Soc Rev, 2009, 38: 883–891CrossRefGoogle Scholar
  2. 2.
    Zhang J, Ma PX. Adv Drug Deliver Rev, 2013, 65: 1215–1233CrossRefGoogle Scholar
  3. 3.
    Hirst AR, Escuder B, Miravet JF, Smith DK. Angew Chem Int Ed, 2008, 47: 8002–8018CrossRefGoogle Scholar
  4. 4.
    Qi Z, Schalley CA. Acc Chem Res, 2014, 47: 2222–2233CrossRefGoogle Scholar
  5. 5.
    Peters GM, Davis JT. Chem Soc Rev, 2016, 45: 3188–3206CrossRefGoogle Scholar
  6. 6.
    Davis JT. Angew Chem Int Ed, 2004, 43: 668–698CrossRefGoogle Scholar
  7. 7.
    Davis JT, Spada GP. Chem Soc Rev, 2007, 36: 296–313CrossRefGoogle Scholar
  8. 8.
    Lena S, Masiero S, Pieraccini S, Spada GP. Chem Eur J, 2009, 15: 7792–7806CrossRefGoogle Scholar
  9. 9.
    Kaucher MS, Harrell WA, Davis JT. J Am Chem Soc, 2006, 128: 38–39CrossRefGoogle Scholar
  10. 10.
    Ma L, Melegari M, Colombini M, Davis JT. J Am Chem Soc, 2008, 130: 2938–2939CrossRefGoogle Scholar
  11. 11.
    Kumar AMS, Sivakova S, Fox JD, Green JE, Marchant RE, Rowan SJ. J Am Chem Soc, 2008, 130: 1466–1476CrossRefGoogle Scholar
  12. 12.
    Liddar H, Li J, Neogi A, Neogi PB, Sarkar A, Cho S, Morkoc H. Appl Phys Lett, 2008, 92: 013309CrossRefGoogle Scholar
  13. 13.
    El Garah M, Perone RC, Bonilla AS, Haar S, Campitiello M, Gutierrez R, Cuniberti G, Masiero S, Ciesielski A, Samorì P. Chem Commun, 2015, 51: 11677–11680CrossRefGoogle Scholar
  14. 14.
    Spada GP, Lena S, Masiero S, Pieraccini S, Surin M, Samorì P. Adv Mater, 2008, 20: 2433–2438CrossRefGoogle Scholar
  15. 15.
    Giorgi T, Lena S, Mariani P, Cremonini MA, Masiero S, Pieraccini S, Rabe JP, Samorì P, Spada GP, Gottarelli G. J Am Chem Soc, 2003, 125: 14741–14749CrossRefGoogle Scholar
  16. 16.
    Lena S, Cremonini MA, Federiconi F, Gottarelli G, Graziano C, Laghi L, Mariani P, Masiero S, Pieraccini S, Spada GP. Chem Eur J, 2007, 13: 3441–3449CrossRefGoogle Scholar
  17. 17.
    Buerkle LE, von Recum HA, Rowan SJ. Chem Sci, 2012, 3: 564–572CrossRefGoogle Scholar
  18. 18.
    Way AE, Korpusik AB, Dorsey TB, Buerkle LE, von Recum HA, Rowan SJ. Macromolecules, 2014, 47: 1810–1818CrossRefGoogle Scholar
  19. 19.
    Adhikari B, Shah A, Kraatz HB. J Mater Chem B, 2014, 2: 4802–4810CrossRefGoogle Scholar
  20. 20.
    Dash J, Patil AJ, Das RN, Dowdall FL, Mann S. Soft Matter, 2011, 7: 8120–8126CrossRefGoogle Scholar
  21. 21.
    Peters GM, Skala LP, Plank TN, Oh H, Manjunatha Reddy GN, Marsh A, Brown SP, Raghavan SR, Davis JT. J Am Chem Soc, 2015, 137: 5819–5827CrossRefGoogle Scholar
  22. 22.
    Kumar A, Gupta SK. J Phys Chem B, 2014, 118: 10543–10551CrossRefGoogle Scholar
  23. 23.
    Arnal-Hérault C, Pasc A, Michau M, Cot D, Petit E, Barboiu M. Angew Chem Int Ed, 2007, 46: 8409–8413CrossRefGoogle Scholar
  24. 24.
    Arnal-Hérault C, Banu A, Barboiu M, Michau M, van der Lee A. Angew Chem, 2007, 119: 4346–4350CrossRefGoogle Scholar
  25. 25.
    Min L, Li T, Tan Q, Tan X, Pan W, He L, Zhang J, Ou E, Xu W. Dalton Trans, 2016, 45: 7912–7920CrossRefGoogle Scholar
  26. 26.
    Peters GM, Skala LP, Plank TN, Hyman BJ, Manjunatha Reddy GN, Marsh A, Brown SP, Davis JT. J Am Chem Soc, 2014, 136: 12596–12599CrossRefGoogle Scholar
  27. 27.
    Peters GM, Skala LP, Davis JT. J Am Chem Soc, 2016, 138: 134–139CrossRefGoogle Scholar
  28. 28.
    Plank TN, Davis JT. Chem Commun, 2016, 52: 5037–5040CrossRefGoogle Scholar
  29. 29.
    Kwan ICM, She YM, Wu G. Chem Commun, 2007, 43: 4286CrossRefGoogle Scholar
  30. 30.
    Shinoda S, Noguchi T, Ikeda M, Habata Y, Tsukube H. J Incl Phenom Macrocycl Chem, 2011, 71: 523–527CrossRefGoogle Scholar
  31. 31.
    Gellert M, Lipsett MN, Davies DR. Proc Natl Acad Sci USA, 1962, 48: 2013–2018CrossRefGoogle Scholar
  32. 32.
    Hu D, Ren J, Qu X. Chem Sci, 2011, 2: 1356–1361CrossRefGoogle Scholar
  33. 33.
    Pu F, Wu L, Ran X, Ren J, Qu X. Angew Chem, 2015, 127: 906–910CrossRefGoogle Scholar
  34. 34.
    Pu F, Ju E, Ren J, Qu X. Adv Mater, 2014, 26: 1111–1117CrossRefGoogle Scholar
  35. 35.
    Pu F, Ran X, Ren J, Qu X. Chem Commun, 2016, 52: 3410–3413CrossRefGoogle Scholar
  36. 36.
    Xue SF, Lu LF, Wang QX, Zhang S, Zhang M, Shi G. Talanta, 2016, 158: 208–213CrossRefGoogle Scholar
  37. 37.
    Wu G, Kwan ICM. J Am Chem Soc, 2009, 131: 3180–3182CrossRefGoogle Scholar
  38. 38.
    Masiero S, Trotta R, Pieraccini S, De Tito S, Perone R, Randazzo A, Spada GP. Org Biomol Chem, 2010, 8: 2683–2692CrossRefGoogle Scholar
  39. 39.
    Panda M, Walmsley JA. J Phys Chem B, 2011, 115: 6377–6383CrossRefGoogle Scholar
  40. 40.
    Shannon RD. Acta Cryst A, 1976, 32: 751–767CrossRefGoogle Scholar
  41. 41.
    Liu L, Shao Y, Peng J, Huang C, Liu H, Zhang L. Anal Chem, 2014, 86: 1622–1631CrossRefGoogle Scholar
  42. 42.
    Mohanty J, Barooah N, Dhamodharan V, Harikrishna S, Pradeepkumar PI, Bhasikuttan AC. J Am Chem Soc, 2013, 135: 367–376CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jin Zhang
    • 1
  • Xiaoyang Li
    • 1
  • Xiuping Sun
    • 1
  • Aixin Song
    • 1
  • Yebang Tan
    • 1
  • Jingcheng Hao
    • 1
  1. 1.Key Laboratory of Colloid and Interface Chemistry, Ministry of EducationShandong UniversityJinanChina

Personalised recommendations