White-light emission and tunable room temperature phosphorescence of dibenzothiophene



Molecular materials exhibiting room temperature phosphorescence (RTP) have received much attention during last few years. It has been known that different stacking fashions (e.g., formation of polymorph) and aggregation/crystal states could largely influence the RTP efficiency. However, whether the crystal morphology or shape could play a key role in modulation of the RTP has not been detected yet. In this work, we report that the dibenzothiophene (DBT) with the same molecular stacking fashion but different crystal morphologies can present alternated RTP performances. By modulation of the fluorescence and phosphorescence dual emission, a direct warm-white color light-emitting has also been successfully achieved. Moreover, the RTP emission can be further tuned through hybridization with β-cyclodextrin in different ratios, with the longest lifetime of 0.43 s.


molecular crystal white-light emission room temperature phosphorescence hybrid 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Basic Research Program (2014CB932103), the National Natural Science Foundation of China (21301016, 21473013), the Beijing Municipal Natural Science Foundation (2152016), and the Fundamental Research Funds for the Central Universities.

Supplementary material

11426_2017_9183_MOESM1_ESM.pdf (3.3 mb)
Supplementary Information for white-light emission and tunable room temperature phosphorescence of dibenzothiophene


  1. 1.
    Cui LS, Kim JU, Nomura H, Nakanotani H, Adachi C. Angew Chem Int Ed, 2016, 55: 6864–6868CrossRefGoogle Scholar
  2. 2.
    Kuei CY, Tsai WL, Tong B, Jiao M, Lee WK, Chi Y, Wu CC, Liu SH, Lee GH, Chou PT. Adv Mater, 2016, 28: 2795–2800CrossRefGoogle Scholar
  3. 3.
    Tao P, Li WL, Zhang J, Guo S, Zhao Q, Wang H, Wei B, Liu SJ, Zhou XH, Yu Q, Xu BS, Huang W. Adv Funct Mater, 2016, 26: 881–894CrossRefGoogle Scholar
  4. 4.
    Mukherjee S, Thilagar P. Chem Commun, 2015, 51: 10988–11003CrossRefGoogle Scholar
  5. 5.
    Chaudhuri D, Sigmund E, Meyer A, Röck L, Klemm P, Lautenschlager S, Schmid A, Yost SR, Van Voorhis T, Bange S, Höger S, Lupton JM. Angew Chem Int Ed, 2013, 52: 13449–13452CrossRefGoogle Scholar
  6. 6.
    Thomas III SW, Yagi S, Swager TM. J Mater Chem, 2005, 15: 2829–2835CrossRefGoogle Scholar
  7. 7.
    An Z, Zheng C, Tao Y, Chen R, Shi H, Chen T, Wang Z, Li H, Deng R, Liu X, Huang W. Nat Mater, 2015, 14: 685–690CrossRefGoogle Scholar
  8. 8.
    Zheng X, Wang X, Mao H, Wu W, Liu B, Jiang X. Nat Commun, 2015, 6: 5834CrossRefGoogle Scholar
  9. 9.
    Sasabe H, Kido J. Eur J Org Chem, 2013, 2013: 7653–7663CrossRefGoogle Scholar
  10. 10.
    Lehner P, Staudinger C, Borisov SM, Klimant I. Nat Commun, 2014, 5: 4460CrossRefGoogle Scholar
  11. 11.
    De Rosa CA, Samonina-Kosicka J, Fan Z, Hendargo HC, Weitzel DH, Palmer GM, Fraser CL. Macromolecules, 2015, 48: 2967–2977CrossRefGoogle Scholar
  12. 12.
    Gao R, Yan D. Chem Commun, 2017, 53: 5408–5411CrossRefGoogle Scholar
  13. 13.
    Xu H, Chen R, Sun Q, Lai W, Su Q, Huang W, Liu X. Chem Soc Rev, 2014, 43: 3259–3302CrossRefGoogle Scholar
  14. 14.
    Chen X, Xu C, Wang T, Zhou C, Du J, Wang Z, Xu H, Xie T, Bi G, Jiang J, Zhang X, Demas JN, Trindle CO, Luo Y, Zhang G. Angew Chem Int Ed, 2016, 55: 9872–9876CrossRefGoogle Scholar
  15. 15.
    Xie Y, Ge Y, Peng Q, Li C, Li Q, Li Z. Adv Mater, 2017, 29: 1606829CrossRefGoogle Scholar
  16. 16.
    Yang X, Yan D. Adv Opt Mater, 2016, 4: 897–905CrossRefGoogle Scholar
  17. 17.
    Fagnoni M. Angew Chem, 2010, 122: 6859–6860CrossRefGoogle Scholar
  18. 18.
    Gao HY, Shen QJ, Zhao XR, Yan XQ, Pang X, Jin WJ. J Mater Chem, 2012, 22: 5336–5343CrossRefGoogle Scholar
  19. 19.
    Yan D. Sci China Chem, 2017, 60: 163–164CrossRefGoogle Scholar
  20. 20.
    Koch M, Perumal K, Blacque O, Garg JA, Saiganesh R, Kabilan S, Balasubramanian KK, Venkatesan K. Angew Chem Int Ed, 2014, 53: 6378–6382CrossRefGoogle Scholar
  21. 21.
    Li Q, Zhou M, Yang Q, Wu Q, Shi J, Gong A, Yang M. Chem Mater, 2016, 28: 8221–8227CrossRefGoogle Scholar
  22. 22.
    Yang X, Yan D. Chem Sci, 2016, 7: 4519–4526CrossRefGoogle Scholar
  23. 23.
    Gao R, Yan D. Chem Sci, 2017, 8: 590–599CrossRefGoogle Scholar
  24. 24.
    Gu X, Yao J, Zhang G, Yan Y, Zhang C, Peng Q, Liao Q, Wu Y, Xu Z, Zhao Y, Fu H, Zhang D. Adv Funct Mater, 2012, 22: 4862–4872CrossRefGoogle Scholar
  25. 25.
    Yuan WZ, Shen XY, Zhao H, Lam JWY, Tang L, Lu P, Wang C, Liu Y, Wang Z, Zheng Q, Sun JZ, Ma Y, Tang BZ. J Phys Chem C, 2010, 114: 6090–6099CrossRefGoogle Scholar
  26. 26.
    Lucenti E, Forni A, Botta C, Carlucci L, Giannini C, Marinotto D, Previtali A, Righetto S, Cariati E. J Phys Chem Lett, 2017, 8: 1894–1898CrossRefGoogle Scholar
  27. 27.
    Wang CR, Gong YY, Yuan WZ, Zhang YM. Chin Chem Lett, 2016, 27: 1184–1192CrossRefGoogle Scholar
  28. 28.
    Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940CrossRefGoogle Scholar
  29. 29.
    Xu B, He J, Mu Y, Zhu Q, Wu S, Wang Y, Zhang Y, Jin C, Lo C, Chi Z, Lien A, Liu S, Xu J. Chem Sci, 2015, 6: 3236–3241CrossRefGoogle Scholar
  30. 30.
    Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741Google Scholar
  31. 31.
    Lu H, Zheng Y, Zhao X, Wang L, Ma S, Han X, Xu B, Tian W, Gao H. Angew Chem Int Ed, 2016, 55: 155–159CrossRefGoogle Scholar
  32. 32.
    Yu T, Ou D, Yang Z, Huang Q, Mao Z, Chen J, Zhang Y, Liu S, Xu J, Bryce MR, Chi Z. Chem Sci, 2017, 8: 1163–1168CrossRefGoogle Scholar
  33. 33.
    Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388CrossRefGoogle Scholar
  34. 34.
    Bučar DK, Lancaster RW, Bernstein J. Angew Chem Int Ed, 2015, 54: 6972–6993CrossRefGoogle Scholar
  35. 35.
    Wang K, Zhang H, Chen S, Yang G, Zhang J, Tian W, Su Z, Wang Y. Adv Mater, 2014, 26: 6168–6173CrossRefGoogle Scholar
  36. 36.
    Wang L, Wang K, Zou B, Ye K, Zhang H, Wang Y. Adv Mater, 2015, 27: 2918–2922CrossRefGoogle Scholar
  37. 37.
    Zhang H, Zhang Z, Ye K, Zhang J, Wang Y. Adv Mater, 2006, 18: 2369–2372CrossRefGoogle Scholar
  38. 38.
    Yuan MS, Wang DE, Xue P, Wang W, Wang JC, Tu Q, Liu Z, Liu Y, Zhang Y, Wang J. Chem Mater, 2014, 26: 2467–2477CrossRefGoogle Scholar
  39. 39.
    Zhang Z, Song X, Wang S, Li F, Zhang H, Ye K, Wang Y. J Phys Chem Lett, 2016, 7: 1697–1702CrossRefGoogle Scholar
  40. 40.
    He X, Benniston AC, Saarenpää H, Lemmetyinen H, Tkachenko NV, Baisch U. Chem Sci, 2015, 6: 3525–3532CrossRefGoogle Scholar
  41. 41.
    Adhikari B, Banerjee A. Chem Eur J, 2010, 16: 13698–13705CrossRefGoogle Scholar
  42. 42.
    Wei R, Song P, Tong A. J Phys Chem C, 2013, 117: 3467–3474CrossRefGoogle Scholar
  43. 43.
    Yan D, Evans DG. Mater Horiz, 2014, 1: 46–57CrossRefGoogle Scholar
  44. 44.
    He Z, Zhang L, Mei J, Zhang T, Lam JWY, Shuai Z, Dong YQ, Tang BZ. Chem Mater, 2015, 27: 6601–6607CrossRefGoogle Scholar
  45. 45.
    Wang MS, Guo SP, Li Y, Cai LZ, Zou JP, Xu G, Zhou WW, Zheng FK, Guo GC. J Am Chem Soc, 2009, 131: 13572–13573CrossRefGoogle Scholar
  46. 46.
    He Z, Zhao W, Lam JWY, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ. Nat Commun, 2017, 8: 416CrossRefGoogle Scholar
  47. 47.
    Kitai A. Luminescent Materials and Applications. London: John Wiley & Sons, 2008CrossRefGoogle Scholar
  48. 48.
    Phillips JM, Coltrin ME, Crawford MH, Fischer AJ, Krames MR, Mueller-Mach R, Mueller GO, Ohno Y, Rohwer LES, Simmons JA, Tsao JY. Laser Photon Rev, 2007, 1: 307–333CrossRefGoogle Scholar
  49. 49.
    Ye S, Xiao F, Pan YX, Ma YY, Zhang QY. Mater Sci Eng, 2010, 71: 1–34CrossRefGoogle Scholar
  50. 50.
    Yang X, Yan D. Chem Commun, 2017, 53: 1801–1804CrossRefGoogle Scholar
  51. 51.
    Xie W, He WW, Du DY, Li SL, Qin JS, Su ZM, Sun CY, Lan YQ. Chem Commun, 2016, 52: 3288–3291CrossRefGoogle Scholar
  52. 52.
    Hirata S, Vacha M. Adv Opt Mater, 2017, 5: 1600996CrossRefGoogle Scholar
  53. 53.
    Yang Y, Wang KZ, Yan D. ACS Appl Mater Interfaces, 2017, 9: 17399–17407CrossRefGoogle Scholar
  54. 54.
    Xu B, Mu Y, Mao Z, Xie Z, Wu H, Zhang Y, Jin C, Chi Z, Liu S, Xu J, Wu YC, Lu PY, Lien A, Bryce MR. Chem Sci, 2016, 7: 2201–2206CrossRefGoogle Scholar
  55. 55.
    Mao Z, Yang Z, Mu Y, Zhang Y, Wang YF, Chi Z, Lo CC, Liu S, Lien A, Xu J. Angew Chem Int Ed, 2015, 54: 6270–6273CrossRefGoogle Scholar
  56. 56.
    Ma H, Shi W, Ren J, Li W, Peng Q, Shuai Z. J Phys Chem Lett, 2016, 7: 2893–2898CrossRefGoogle Scholar
  57. 57.
    Zhang D, Duan L, Li C, Li Y, Li H, Zhang D, Qiu Y. Adv Mater, 2014, 26: 5050–5055CrossRefGoogle Scholar
  58. 58.
    Gierschner J, Park SY. J Mater Chem C, 2013, 1: 5818–5832CrossRefGoogle Scholar
  59. 59.
    Li J, Lv B, Yan D, Yan S, Wei M, Yin M. Adv Funct Mater, 2015, 25: 7442–7449CrossRefGoogle Scholar
  60. 60.
    Ma X, Cao J, Wang Q, Tian H. Chem Commun, 2011, 47: 3559–3561CrossRefGoogle Scholar
  61. 61.
    Chen H, Ma X, Wu S, Tian H. Angew Chem Int Ed, 2014, 53: 14149–14152CrossRefGoogle Scholar
  62. 62.
    Cao J, Ma X, Min M, Cao T, Wu S, Tian H. Chem Commun, 2014, 50: 3224–3226CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijingChina
  2. 2.State Key Laboratory of Chemical Resource EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations