Skip to main content
Log in

12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

An Erratum to this article was published on 14 April 2021

This article has been updated

Abstract

Heteropolyacids (HPA) are well known for their versatile solid acid catalysis in diverse chemical reactions, however they suffer from low surface area (<10 m2/g) and leaching into the reactions media, which reduce their prospects as industrial catalyst. Herein, a novel hybrid material HPW@Zr-BTC, composed of 12-tungstophoric acid (HPW) and ZrIV-benzene tri-carboxylate (Zr-BTC) metal-organic framework (MOF), was prepared via one-pot solvothermal method. Excellent HPW loading up to 32.3 wt% was achieved, and HPW@Zr-BTC composite proved to be highly stable, besides the crystalline morphology of Zr-BTC was intact. The catalytic activity of the hybrid composite was explored via Friedel-Crafts acylation of anisole with benzoyl chloride. The 28.2 wt% HPW@Zr-BTC showed excellent catalytic performance, with 99.4% anisole conversion and 97.6% yield (pmethoxybenzophenone) under solvent free conditions. Excellent retention of catalytic activity was achieved after at least five consecutive runs due to non-observable HPW leaching. The promising activity and stability of the catalyst forecasted its potential industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Okuhara T. Chem Rev, 2002, 102: 3641–3666

    Article  CAS  PubMed  Google Scholar 

  2. Usman M, Li D, Li CS, Zhang SJ. Sci China Chem, 2015, 58: 738–746

    Article  CAS  Google Scholar 

  3. Wang SS, Yang GY. Chem Rev, 2015, 115: 4893–4962

    Article  CAS  PubMed  Google Scholar 

  4. Mizuno N, Misono M. Chem Rev, 1998, 98: 199–218

    Article  CAS  PubMed  Google Scholar 

  5. Wang J, Zhao J, Niu J, Guo D, Dang D. Sci China Ser B, 2003, 46: 583–594

    Article  CAS  Google Scholar 

  6. Zhou L, Wang L, Zhang S, Yan R, Diao Y. J Catal, 2015, 329: 431–440

    Article  CAS  Google Scholar 

  7. Campos-Martin JM, Capel-Sanchez MC, Fierro JLG. Green Chem, 2004, 6: 557–562

    Article  CAS  Google Scholar 

  8. Lv H, Geletii YV, Zhao C, Vickers JW, Zhu G, Luo Z, Song J, Lian T, Musaev DG, Hill CL. Chem Soc Rev, 2012, 41: 7572–7589

    Article  CAS  PubMed  Google Scholar 

  9. Liu R, Shang X, Li C, Xing X, Yu X, Zhang G, Zhang S, Cao H, Bi L. Int J Hydrogen Energy, 2013, 38: 9954–9960

    Article  CAS  Google Scholar 

  10. Zhang H, Yan R, Yang L, Diao Y, Wang L, Zhang S. Ind Eng Chem Res, 2013, 52: 4484–4490

    Article  CAS  Google Scholar 

  11. Xing X, Wang M, Liu R, Zhang S, Zhang K, Li B, Zhang G. Green Energy Environ, 2016, 1: 138–143

    Article  Google Scholar 

  12. Zheng Y, Zhang H, Wang L, Zhang S, Wang S. Front Chem Sci Eng, 2016, 10: 139–146

    Article  CAS  Google Scholar 

  13. Kozhevnikov IV. Chem Rev, 1998, 98: 171–198

    Article  CAS  PubMed  Google Scholar 

  14. Gouzerh P, Proust A. Chem Rev, 1998, 98: 77–112

    Article  CAS  PubMed  Google Scholar 

  15. Liu C, Zhang Z, Liu W, Du X, Liu S, Cui Y. Green Energy Environ, 2017, 2: 436–441

    Article  Google Scholar 

  16. Romanelli G, Autino JC, Vázquez P, Pizzio L, Blanco M, Cáceres C. Appl Catal A, 2009, 352: 208–213

    Article  CAS  Google Scholar 

  17. Ferreira P, Fonseca IM, Ramos AM, Vital J, Castanheiro JE. Catal Commun, 2011, 12: 573–576

    Article  CAS  Google Scholar 

  18. Blasco T, Corma A, Martinez A, Martinezescolano P. J Catal, 1998, 177: 306–313

    Article  CAS  Google Scholar 

  19. Kumar C R, M. S, Lingaiah N. Appl Catal A, 2014, 487: 165–171

    Article  Google Scholar 

  20. Su F, Ma L, Guo Y, Li W. Catal Sci Technol, 2012, 2: 2367–2374

    Article  CAS  Google Scholar 

  21. Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Nature, 1999, 402: 276–279

    Article  CAS  Google Scholar 

  22. Wu L, Xue M, Huang L, Qiu SL. Sci China Chem, 2011, 54: 1441–1445

    Article  CAS  Google Scholar 

  23. James SL. Chem Soc Rev, 2003, 32: 276–288

    Article  CAS  PubMed  Google Scholar 

  24. Férey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surblé S, Margiolaki I. Science, 2005, 309: 2040–2042

    Article  PubMed  Google Scholar 

  25. Sun CY, Liu SX, Liang DD, Shao KZ, Ren YH, Su ZM. J Am Chem Soc, 2009, 131: 1883–1888

    Article  CAS  PubMed  Google Scholar 

  26. Maksimchuk N, Timofeeva M, Melgunov M, Shmakov A, Chesalov Y, Dybtsev D, Fedin V, Kholdeeva O. J Catal, 2008, 257: 315–323

    Article  CAS  Google Scholar 

  27. Wang XS, Huang YB, Lin ZJ, Cao R. Dalton Trans, 2014, 43: 11950–11958

    Article  CAS  PubMed  Google Scholar 

  28. Bromberg L, Diao Y, Wu H, Speakman SA, Hatton TA. Chem Mater, 2012, 24: 1664–1675

    Article  CAS  Google Scholar 

  29. Juan-Alcañiz J, Gascon J, Kapteijn F. J Mater Chem, 2012, 22: 10102–10118

    Article  Google Scholar 

  30. Yu R, Kuang XF, Wu XY, Lu CZ, Donahue JP. Coordin Chem Rev, 2009, 253: 2872–2890

    Article  CAS  Google Scholar 

  31. Canioni R, Roch-Marchal C, Sécheresse F, Horcajada P, Serre C, Hardi-Dan M, Férey G, Grenèche JM, Lefebvre F, Chang JS, Hwang YK, Lebedev O, Turner S, Van Tendeloo G. J Mater Chem, 2011, 21: 1226–1233

    Article  CAS  Google Scholar 

  32. Xiao B, Wheatley PS, Zhao X, Fletcher AJ, Fox S, Rossi AG, Megson IL, Bordiga S, Regli L, Thomas KM, Morris RE. J Am Chem Soc, 2007, 129: 1203–1209

    Article  CAS  PubMed  Google Scholar 

  33. Jiang J, Gándara F, Zhang YB, Na K, Yaghi OM, Klemperer WG. J Am Chem Soc, 2014, 136: 12844–12847

    Article  CAS  PubMed  Google Scholar 

  34. Cavka JH, Jakobsen S, Olsbye U, Guillou N, Lamberti C, Bordiga S, Lillerud KP. J Am Chem Soc, 2008, 130: 13850–13851

    Article  PubMed  Google Scholar 

  35. Piscopo CG, Polyzoidis A, Schwarzer M, Loebbecke S. Micropor Mesopor Mater, 2015, 208: 30–35

    Article  CAS  Google Scholar 

  36. Zhou F, Lu N, Fan B, Wang H, Li R. J Energy Chem, 2016, 25: 874–879

    Article  Google Scholar 

  37. Salomon W, Roch-Marchal C, Mialane P, Rouschmeyer P, Serre C, Haouas M, Taulelle F, Yang S, Ruhlmann L, Dolbecq A. Chem Commun, 2015, 51: 2972–2975

    Article  CAS  Google Scholar 

  38. Yang XL, Qiao LM, Dai WL. Micropor Mesopor Mater, 2015, 211: 73–81

    Article  CAS  Google Scholar 

  39. Misono M, Mizuno N, Katamura K, Kasai A, Konishi Y, Sakata K, Okuhara T, Yoneda Y. Bull Chem Soc Jpn, 1982, 55: 400–406

    Article  CAS  Google Scholar 

  40. Olah GA, Reddy VP, Prakash GKS. Friedel-Crafts Reactions. New York: John Wiley & Sons, Inc., 2000. 159–199

    Google Scholar 

  41. Qiu R, Chen Y, Yin SF, Xu X, Au CT. RSC Adv, 2012, 2: 10774–10793

    Article  CAS  Google Scholar 

  42. Dhakshinamoorthy A, Opanasenko M, Čejka J, Garcia H. Catal Sci Technol, 2013, 3: 2509–2540

    Article  CAS  Google Scholar 

  43. El-Hiti GA, Smith K, S. Hegazy A. Curr Org Chem, 2015, 19: 585–598

    Article  CAS  Google Scholar 

  44. Furukawa H, Gándara F, Zhang YB, Jiang J, Queen WL, Hudson MR, Yaghi OM. J Am Chem Soc, 2014, 136: 4369–4381

    Article  CAS  PubMed  Google Scholar 

  45. Schaate A, Roy P, Godt A, Lippke J, Waltz F, Wiebcke M, Behrens P. Chem Eur J, 2011, 17: 6643–6651

    Article  CAS  PubMed  Google Scholar 

  46. Kholdeeva OA, Maksimov GM, Maksimovskaya RI, Vanina MP, Trubitsina TA, Naumov DY, Kolesov BA, Antonova NS, Carbó JJ, Poblet JM. Inorg Chem, 2006, 45: 7224–7234

    Article  CAS  PubMed  Google Scholar 

  47. Vanhaecht S, Absillis G, Parac-Vogt TN. Dalton Trans, 2013, 42: 15437–15446

    Article  CAS  PubMed  Google Scholar 

  48. Xu X, Lu Y, Yang Y, Nosheen F, Wang X. Sci China Mater, 2015, 58: 370–377

    Article  CAS  Google Scholar 

  49. Ammar M, Jiang S, Ji S. J Solid State Chem, 2016, 233: 303–310

    Article  CAS  Google Scholar 

  50. Kozhevnikov IV, Sinnema A, Jansen RJJ, Pamin K, van Bekkum H. Catal Lett, 1994, 30: 241–252

    Article  CAS  Google Scholar 

  51. Rocchiccioli-Deltcheff C, Fournier M, Franck R, Thouvenot R. Inorg Chem, 1983, 22: 207–216

    Article  CAS  Google Scholar 

  52. Thielemann JP, Girgsdies F, Schlögl R, Hess C. Beilstein J Nanotechnol, 2011, 2: 110–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Khyzhun OY. J Alloys Compd, 2000, 305: 1–6

    Article  CAS  Google Scholar 

  54. Morris RE WP. Adsorption and release of nitric oxide in metal-organic frameworks. US Patent, 8486451, 2010–09-23

    Google Scholar 

  55. Wee LH, Wiktor C, Turner S, Vanderlinden W, Janssens N, Bajpe SR, Houthoofd K, Van Tendeloo G, De Feyter S, Kirschhock CEA, Martens JA. J Am Chem Soc, 2012, 134: 10911–10919

    Article  CAS  PubMed  Google Scholar 

  56. Li SW, Gao RM, Zhang RL, Zhao J. Fuel, 2016, 184: 18–27

    Article  CAS  Google Scholar 

  57. Okuhara T, Watanabe H, Nishimura T, Inumaru K, Misono M. Chem Mater, 2000, 12: 2230–2238

    Article  CAS  Google Scholar 

  58. de Noronha RG, Fernandes AC, Romão CC. Tetrahedron Lett, 2009, 50: 1407–1410

    Article  Google Scholar 

  59. Firouzabadi H, Iranpoor N, Nowrouzi F. Tetrahedron, 2004, 60: 10843–10850

    Article  CAS  Google Scholar 

  60. Choudhary VR, Jana SK, Patil NS, K. Bhargava S. Micropor Mesopor Mater, 2003, 57: 21–35

    Article  CAS  Google Scholar 

  61. Patil PT, Malshe KM, Kumar P, Dongare MK, Kemnitz E. Catal Commun, 2002, 3: 411–416

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0601303), the National Natural Science Foundation of China (51374193, 21676278), Key Program of National Natural Science Foundation of China (9143420), and Chinese Academy of Sciences, State Administration of Foreign Experts Affairs (CAS/SAFEA) International Partnership Program for Creative Research Teams (20140491518). Latif Ullah acknowledged the Chinese Academy of Sciences (CAS) and the World Academy of Sciences (TWAS) for providing with the opportunity to pursue research work under the umbrella of CAS-TWAS Presidents’ Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guoying Zhao or Suojiang Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, L., Zhao, G., Xu, Z. et al. 12-Tungstophosphoric acid niched in Zr-based metal-organic framework: a stable and efficient catalyst for Friedel-Crafts acylation. Sci. China Chem. 61, 402–411 (2018). https://doi.org/10.1007/s11426-017-9182-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9182-0

Keywords

Navigation