Skip to main content
Log in

A facile template free synthesis of porous carbon nanospheres with high capacitive performance

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Porous carbon nanospheres have been widely used in different fields such as electric devices, catalysts, and water treatment. Here we will introduce a template-free process for the preparation of porous carbon nanospheres starting from a direct 3-aminophenol formaldehyde polymerization in a mixed solution. We identify that the addition of different alcohols, particularly ethanol and n-butanol, is able to change the growth habit of the polymer nanospheres and introduce a favorable inner compositional homogeneity for the preparation of porous structure. After the carbonization of the polymer nanospheres, the obtained porous carbon exhibits promising electrochemical performance when used as electrode material in super capacitor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Titirici MM, Antonietti M. Chem Soc Rev, 2010, 39: 103–116

    Article  CAS  Google Scholar 

  2. Liu J, Wickramaratne NP, Qiao SZ, Jaroniec M. Nat Mater, 2015, 14: 763–774

    Article  CAS  Google Scholar 

  3. Wang GH, Hilgert J, Richter FH, Wang F, Bongard HJ, Spliethoff B, Weidenthaler C, Schüth F. Nat Mater, 2014, 13: 293–300

    Article  Google Scholar 

  4. Wei F, Liu J, Zhu YN, Wang XS, Cao CY, Song WG. Sci China Chem, 2017, 60: 1236–1242

    Article  CAS  Google Scholar 

  5. Xu F, Tang Z, Huang S, Chen L, Liang Y, Mai W, Zhong H, Fu R, Wu D. Nat Commun, 2015, 6: 7221

    Article  Google Scholar 

  6. Roberts AD, Li X, Zhang H. Chem Soc Rev, 2014, 43: 4341–4356

    Article  CAS  Google Scholar 

  7. Valle-Vigon P, Sevilla M, Fuertes AB. Chem Mater, 2010, 22: 2526–2533

    Article  CAS  Google Scholar 

  8. Zheng G, Lee SW, Liang Z, Lee HW, Yan K, Yao H, Wang H, Li W, Chu S, Cui Y. Nat Nanotech, 2014, 9: 618–623

    Article  CAS  Google Scholar 

  9. Stein A, Wilson BE, Rudisill SG. Chem Soc Rev, 2013, 42: 2763–2803

    Article  CAS  Google Scholar 

  10. Fuertes AB, Valle-Vigón P, Sevilla M. Chem Commun, 2012, 48: 6124–6126

    Article  CAS  Google Scholar 

  11. Wang Z, Li F, Stein A. Nano Lett, 2007, 7: 3223–3226

    Article  CAS  Google Scholar 

  12. Schuster J, He G, Mandlmeier B, Yim T, Lee KT, Bein T, Nazar LF. Angew Chem Int Ed, 2012, 51: 3591–3595

    Article  CAS  Google Scholar 

  13. Liu J, Yang T, Wang DW, Lu GQM, Zhao D, Qiao SZ. Nat Commun, 2013, 4: 2798

    Google Scholar 

  14. White RJ, Tauer K, Antonietti M, Titirici MM. J Am Chem Soc, 2010, 132: 17360–17363

    Article  CAS  Google Scholar 

  15. Wu Z, Wu WD, Liu W, Selomulya C, Chen XD, Zhao D. Angew Chem Int Ed, 2013, 52: 13764–13768

    Article  CAS  Google Scholar 

  16. Bin DS, Chi ZX, Li Y, Zhang K, Yang X, Sun YG, Piao JY, Cao AM, Wan LJ. J Am Chem Soc, 2017, 139: 13492–13498

    Article  CAS  Google Scholar 

  17. Liu J, Qiao SZ, Liu H, Chen J, Orpe A, Zhao D, Lu GQM. Angew Chem Int Ed, 2011, 50: 5947–5951

    Article  CAS  Google Scholar 

  18. Irisarri E, Ponrouch A, Palacin MR. J Electrochem Soc, 2015, 162: A2476–A2482

    Article  CAS  Google Scholar 

  19. Li Z, Hu X, Xiong D, Li B, Wang H, Li Q. Electrochim Acta, 2016, 219: 339–349

    Article  CAS  Google Scholar 

  20. Wang X, Kong D, Wang B, Song Y, Zhi L. Sci China Chem, 2016, 59: 713–718

    Article  CAS  Google Scholar 

  21. Li S, Wang M, Lian Y. Sci China Chem, 2016, 59: 405–411

    Article  CAS  Google Scholar 

  22. Chen W, Rakhi RB, Hu L, Xie X, Cui Y, Alshareef HN. Nano Lett, 2011, 11: 5165–5172

    Article  CAS  Google Scholar 

  23. Simon P, Gogotsi Y. Nat Mater, 2008, 7: 845–854

    Article  CAS  Google Scholar 

  24. Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, Dong H, Li X, Zhang L. Int J Hydrogen Energy, 2009, 34: 4889–4899

    Article  CAS  Google Scholar 

  25. Pernak J, Skrzypczak A, Lota G, Frackowiak E. Chem Eur J, 2007, 13: 3106–3112

    Article  CAS  Google Scholar 

  26. Fang B, Binder L. Electrochim Acta, 2007, 52: 6916–6921

    Article  CAS  Google Scholar 

  27. Xing W, Qiao SZ, Ding RG, Li F, Lu GQ, Yan ZF, Cheng HM. Carbon, 2006, 44: 216–224

    Article  CAS  Google Scholar 

  28. Xu B, Wu F, Chen S, Zhang C, Cao G, Yang Y. Electrochim Acta, 2007, 52: 4595–4598

    Article  CAS  Google Scholar 

  29. Katakabe T, Kaneko T, Watanabe M, Fukushima T, Aida T. J Electrochem Soc, 2005, 152: A1913

    Article  CAS  Google Scholar 

  30. Wang Y, Shi Z, Huang Y, Ma Y, Wang C, Chen M, Chen Y. J Phys Chem C, 2009, 113: 13103–13107

    Article  CAS  Google Scholar 

  31. Wang H, Hao Q, Yang X, Lu L, Wang X. Electrochem Commun, 2009, 11: 1158–1161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51672282, 21373238), the Major State Basic Research Program of China (2013CB934000), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA09010101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anmin Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piao, J., Bin, D., Duan, S. et al. A facile template free synthesis of porous carbon nanospheres with high capacitive performance. Sci. China Chem. 61, 538–544 (2018). https://doi.org/10.1007/s11426-017-9181-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9181-9

Keywords

Navigation