Skip to main content
Log in

A combined experimental and theoretical investigation of donor and acceptor interface in efficient aqueous-processed polymer/nanocrystal hybrid solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

As a route to improving the energy conversion of organic-inorganic hybrid-solar cells, we have tested the performance of poly (phenylene vinylene) (PPV), poly(2,5-thienylene vinylene) (PWTV) polymers and CdTe nanocrystal devices produced via aqueous-processing. It is found that small differences in the conformation of the sensitizer lead to dramatic effects on the solar cell efficiency. Using a combination of UV-Vis absorption spectroscopy and first-principles non-adiabatic molecular dynamics (NAMD) based on time-dependent density-functional theory (TDDFT), PPV is found to have a longer electron injection and recombination time despite seeming to have a better energy alignment with the substrate, which leads to a higher devices performance than PWTV. The present results shed new light on the understanding of organic-inorganic hybrid-solar cells and will trigger further experimental and theoretical investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Couderc E, Greaney MJ, Brutchey RL, Bradforth SE. J Am Chem Soc, 2013, 135: 18418–18426

    Article  CAS  PubMed  Google Scholar 

  2. Fu W, Wang L, Ling J, Li H, Shi M, Xue J, Chen H. Nanoscale, 2014, 6: 10545–10550

    Article  CAS  PubMed  Google Scholar 

  3. Huynh WU, Dittmer JJ, Alivisatos AP. Science, 2002, 295: 2425–2427

    Article  CAS  PubMed  Google Scholar 

  4. Greaney MJ, Brutchey RL. Mater Today, 2015, 18: 31–38

    Article  CAS  Google Scholar 

  5. Du X, Zeng Q, Jin G, Liu F, Ji T, Yue Y, Yang Y, Zhang H, Yang B. Small, 2017, 13: 1603771

    Article  CAS  Google Scholar 

  6. Du X, Zeng Q, Zhang H, Yang B. Chin J Chem, 2017, 35: 551–561

    Article  CAS  Google Scholar 

  7. Zeng Q, Hu L, Cui J, Feng T, Du X, Jin G, Liu F, Ji T, Li F, Zhang H, Yang B. ACS Appl Mater Interf, 2017, 9: 31345–31351

    Article  CAS  Google Scholar 

  8. Chen Z, Du X, Zeng Q, Yang B. Mater Chem Front, 2017, 1: 1502–1513

    Article  CAS  Google Scholar 

  9. Zhou R, Stalder R, Xie D, Cao W, Zheng Y, Yang Y, Plaisant M, Holloway PH, Schanze KS, Reynolds JR, Xue J. ACS Nano, 2013, 7: 4846–4854

    Article  CAS  PubMed  Google Scholar 

  10. Liu Z, Sun Y, Yuan J, Wei H, Huang X, Han L, Wang W, Wang H, Ma W. Adv Mater, 2013, 25: 5772–5778

    Article  CAS  PubMed  Google Scholar 

  11. Lu H, Joy J, Gaspar RL, Bradforth SE, Brutchey RL. Chem Mater, 2016, 28: 1897–1906

    Article  CAS  Google Scholar 

  12. Zeng Q, Chen Z, Zhao Y, Du X, Liu F, Jin G, Dong F, Zhang H, Yang B. ACS Appl Mater Interf, 2015, 7: 23223–23230

    Article  CAS  Google Scholar 

  13. Chen Z, Liu F, Zeng Q, Cheng Z, Du X, Jin G, Zhang H, Yang B. J Mater Chem A, 2015, 3: 10969–10975

    Article  CAS  Google Scholar 

  14. Zeng Q, Chen Z, Liu F, Jin G, Du X, Ji T, Zhao Y, Yue Y, Wang H, Meng D, Xie T, Zhang H, Yang B. Sol RRL, 2017, 1: 1600020

    Article  CAS  Google Scholar 

  15. Chen Z, Zhang H, Du X, Cheng X, Chen X, Jiang Y, Yang B. Energy Environ Sci, 2013, 6: 1597

    Article  CAS  Google Scholar 

  16. Zhao Y, Zeng Q, Liu X, Jiao S, Pang G, Du X, Zhang K, Yang B. J Mater Chem A, 2016, 4: 11738–11746

    Article  CAS  Google Scholar 

  17. Wei H, Zhang H, Jin G, Na T, Zhang G, Zhang X, Wang Y, Sun H, Tian W, Yang B. Adv Funct Mater, 2013, 23: 4035–4042

    Article  CAS  Google Scholar 

  18. Du X, Chen Z, Li Z, Hao H, Zeng Q, Dong C, Yang B. Adv Energy Mater, 2014, 4: 1400135

    Article  CAS  Google Scholar 

  19. Jin G, Chen Z, Dong C, Cheng Z, Du X, Zeng Q, Liu F, Sun H, Zhang H, Yang B. ACS Appl Mater Interf, 2016, 8: 7101–7110

    Article  CAS  Google Scholar 

  20. Liu F, Chen Z, Du X, Zeng Q, Ji T, Cheng Z, Jin G, Yang B. J Mater Chem A, 2016, 4: 1105–1111

    Article  CAS  Google Scholar 

  21. Wei H, Jin G, Wang L, Hao L, Na T, Wang Y, Tian W, Sun H, Zhang H, Wang H, Zhang H, Yang B. Adv Mater, 2014, 26: 3655–3661

    Article  CAS  PubMed  Google Scholar 

  22. Yu W, Zhang H, Fan Z, Zhang J, Wei H, Zhou D, Xu B, Li F, Tian W, Yang B. Energy Environ Sci, 2011, 4: 2831–2834

    Article  CAS  Google Scholar 

  23. Chen Z, Du X, Jin G, Zeng Q, Liu F, Yang B. Phys Chem Chem Phys, 2016, 18: 15791–15797

    Article  CAS  PubMed  Google Scholar 

  24. Oosterhout SD, Koster LJA, van Bavel SS, Loos J, Stenzel O, Thiedmann R, Schmidt V, Campo B, Cleij TJ, Lutzen L, Vanderzande D, Wienk MM, Janssen RAJ. Adv Energy Mater, 2011, 1: 90–96

    Article  CAS  Google Scholar 

  25. Chen Z, Zhang H, Zeng Q, Wang Y, Xu D, Wang L, Wang H, Yang B. Adv Energy Mater, 2014, 4: 1400235

    Article  CAS  Google Scholar 

  26. Chen Z, Zeng Q, Liu F, Jin G, Du X, Du J, Zhang H, Yang B. RSC Adv, 2015, 5: 74263–74269

    Article  CAS  Google Scholar 

  27. Zhai F, Wei H, Zhan S, Jin G, Yang B, Sun H, Huang Z. Chin J Polym Sci, 2015, 33: 215–223

    Article  CAS  Google Scholar 

  28. Du X, Chen Z, Liu F, Zeng Q, Jin G, Li F, Yao D, Yang B. ACS Appl Mater Interf, 2016, 8: 900–907

    Article  CAS  Google Scholar 

  29. Duncan WR, Stier WM, Prezhdo OV. J Am Chem Soc, 2005, 127: 7941–7951

    Article  CAS  PubMed  Google Scholar 

  30. Duncan WR, Craig CF, Prezhdo OV. J Am Chem Soc, 2007, 129: 8528–8543

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Zhang X, Lu G. J Phys Chem B, 2010, 114: 17077–17083

    Article  CAS  PubMed  Google Scholar 

  32. Barbatti M. Comput Mol Sci, 2011, 1: 620–633

    Article  CAS  Google Scholar 

  33. Li Z, Zhang X, Lu G. J Phys Chem C, 2012, 116: 9845–9851

    Article  CAS  Google Scholar 

  34. Moehl T, Kytin VG, Bisquert J, Kunst M, Bolink HJ, Garcia-Belmonte G. ChemSusChem, 2009, 2: 314–320

    Article  CAS  PubMed  Google Scholar 

  35. Lekha P, Balakrishnan A, Subramanian KRV, Nair SV. Mater Chem Phys, 2013, 141: 216–222

    Article  CAS  Google Scholar 

  36. Lin KH, Chuang CY, Lee YY, Li FC, Chang YM, Liu IP, Chou SC, Lee YL. J Phys Chem C, 2012, 116: 1550–1555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51433003) and the National Basic Research Program of China (2014CB643503).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheng Meng or Bai Yang.

Electronic supplementary material

11426_2017_9177_MOESM1_ESM.doc

A combined experimental and theoretical investigation of donor and acceptor interface in efficient aqueous-processed polymer/nanocrystal hybrid solar cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Ma, W., Jin, G. et al. A combined experimental and theoretical investigation of donor and acceptor interface in efficient aqueous-processed polymer/nanocrystal hybrid solar cells. Sci. China Chem. 61, 437–443 (2018). https://doi.org/10.1007/s11426-017-9177-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9177-x

Keywords

Navigation