Skip to main content
Log in

Sequential protocol for C(sp)–H carboxylation with CO2: KOtBu-catalyzed C(sp)–H silylation and KOtBu-mediated carboxylation

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

CO2 incorporation into C–H bonds is an important and interesting topic. Herein a sequential protocol for C(sp)–H carboxylation by employing a metal-free C–H activation/catalytic silylation reaction in conjunction with KOtBu-mediated carboxylation with CO2 was established, in which KOtBu catalyzes silylation of terminal alkynes to form alkynylsilanes at low temperature, and simultaneously mediates carboxylation of the alkynesilanes with atmospheric CO2. Importantly, the carboxylation further promotes the silylation, which makes the whole reaction proceed very rapidly. Moreover, this methodology is simple and scalable, which is characterized by short reaction time, wide substrate scope, excellent functional-group tolerance and mild reaction conditions, affording a range of corresponding propiolic acid products in excellent yields in most cases. In addition, it also allows for a convenient 13C-labeling through the use of 13CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bates ED, Mayton RD, Ntai I, Davis JH. J Am Chem Soc, 2002, 124: 926–927

    Article  CAS  PubMed  Google Scholar 

  2. Bakker D, Watson A. Nature, 2001, 410: 765–766

    Article  CAS  PubMed  Google Scholar 

  3. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kühn FE. Angew Chem Int Ed, 2011, 50: 8510–8537

    Article  CAS  Google Scholar 

  4. Wesselbaum S, Vom Stein T, Klankermayer J, Leitner W. Angew Chem Int Ed, 2012, 51: 7499–7502

    Article  CAS  Google Scholar 

  5. Das Neves Gomes C, Jacquet O, Villiers C, Thuéry P, Ephritikhine M, Cantat T. Angew Chem Int Ed, 2012, 51: 187–190

    Article  CAS  Google Scholar 

  6. Tlili A, Frogneux X, Blondiaux E, Cantat T. Angew Chem Int Ed, 2014, 53: 2543–2545

    Article  CAS  Google Scholar 

  7. He M, Sun Y, Han B. Angew Chem Int Ed, 2013, 52: 9620–9633

    Article  CAS  Google Scholar 

  8. Polyzos A, O’Brien M, Petersen TP, Baxendale IR, Ley SV. Angew Chem Int Ed, 2011, 50: 1190–1193

    Article  CAS  Google Scholar 

  9. Zhang Z, Ju T, Ye JH, Yu DG. Synlett, 2017, 28: 741–750

    Article  CAS  Google Scholar 

  10. Kim SH, Kim KH, Hong SH. Angew Chem Int Ed, 2014, 53: 771–774

    Article  CAS  Google Scholar 

  11. Liu XH, Ma JG, Niu Z, Yang GM, Cheng P. Angew Chem Int Ed, 2015, 54: 988–991

    Article  CAS  Google Scholar 

  12. Manjolinho F, Arndt M, Gooßen K, Gooßen LJ. ACS Catal, 2012, 2: 2014–2021

    Article  CAS  Google Scholar 

  13. Mita T, Suga K, Sato K, Sato Y. Org Lett, 2015, 17: 5276–5279

    Article  CAS  PubMed  Google Scholar 

  14. Edwin Raja GC, Irudayanathan FM, Kim HS, Kim J, Lee S. J Org Chem, 2016, 81: 5244–5249

    Article  CAS  PubMed  Google Scholar 

  15. Zhang L, Hang Z, Liu ZQ. Angew Chem Int Ed, 2015, 55: 236–239

    Article  CAS  Google Scholar 

  16. Ackermann L. Angew Chem Int Ed, 2011, 50: 3842–3844

    Article  CAS  Google Scholar 

  17. Mizuno H, Takaya J, Iwasawa N. J Am Chem Soc, 2011, 133: 1251–1253

    Article  CAS  PubMed  Google Scholar 

  18. Dalton DM, Rovis T. Nat Chem, 2010, 2: 710–711

    Article  CAS  PubMed  Google Scholar 

  19. Mita T, Michigami K, Sato Y. Org Lett, 2012, 14: 3462–3465

    Article  CAS  PubMed  Google Scholar 

  20. Yu B, Yang P, Gao X, Yang ZZ, Zhao YF, Zhang HY, Liu ZM. New J Chem, 2017, 41: 9250–9255

    Article  CAS  Google Scholar 

  21. Toutov AA, Liu WB, Betz KN, Fedorov A, Stoltz BM, Grubbs RH. Nature, 2015, 518: 80–84

    Article  CAS  Google Scholar 

  22. Barham JP, Coulthard G, Emery KJ, Doni E, Cumine F, Nocera G, John MP, Berlouis LEA, McGuire T, Tuttle T, Murphy JA. J Am Chem Soc, 2016, 138: 7402–7410

    Article  CAS  PubMed  Google Scholar 

  23. Wang H, Wang Z, Huang H, Tan J, Xu K. Org Lett, 2016, 18: 5680–5683

    Article  CAS  PubMed  Google Scholar 

  24. Shi Q, Zhang S, Zhang J, Oswald VF, Amassian A, Marder SR, Blakey SB. J Am Chem Soc, 2016, 138: 3946–3949

    Article  CAS  PubMed  Google Scholar 

  25. Li F, Haj Elhussin IE, Li S, Zhou H, Wu J, Tian Y. J Org Chem, 2015, 80: 10605–10610

    Article  CAS  PubMed  Google Scholar 

  26. Yu D, Zhang Y. Green Chem, 2011, 13: 1275–1279

    Article  CAS  Google Scholar 

  27. Yu B, Zhao Y, Zhang H, Xu J, Hao L, Gao X, Liu Z. Chem Commun, 2014, 50: 2330–2333

    Article  CAS  Google Scholar 

  28. Yu B, Yang Z, Zhao Y, Hao L, Zhang H, Gao X, Han B, Liu Z. Chem Eur J, 2016, 22: 1097–1102

    Article  CAS  PubMed  Google Scholar 

  29. Toutov AA, Betz KN, Schuman DP, Liu WB, Fedorov A, Stoltz BM, Grubbs RH. J Am Chem Soc, 2017, 139: 1668–1674

    Article  CAS  PubMed  Google Scholar 

  30. Yu B, Xie JN, Zhong CL, Li W, He LN. ACS Catal, 2015, 5: 3940–3944

    Article  CAS  Google Scholar 

  31. Goodreid JD, Duspara PA, Bosch C, Batey RA. J Org Chem, 2014, 79: 943–954

    Article  CAS  PubMed  Google Scholar 

  32. Lettan Ii RB, Scheidt KA. Org Lett, 2005, 7: 3227–3230

    Article  CAS  PubMed  Google Scholar 

  33. Swamy KCK, Chandrasekhar V, Harland JJ, Holmes JM, Day RO, Holmes RR. J Am Chem Soc, 1990, 112: 2341–2348

    Article  CAS  Google Scholar 

  34. Liu WB, Schuman DP, Yang YF, Toutov AA, Liang Y, Klare HFT, Nesnas N, Oestreich M, Blackmond DG, Virgil SC, Banerjee S, Zare RN, Grubbs RH, Houk KN, Stoltz BM. J Am Chem Soc, 2017, 139: 6867–6879

    Article  CAS  PubMed  Google Scholar 

  35. Banerjee S, Yang YF, Jenkins ID, Liang Y, Toutov AA, Liu WB, Schuman DP, Grubbs RH, Stoltz BM, Krenske EH, Houk KN, Zare RN. J Am Chem Soc, 2017, 139: 6880–6887

    Article  CAS  PubMed  Google Scholar 

  36. McDonald IM, Mate RA, Zusi FC, Huang H, Post-Munson DJ, Ferrante MA, Gallagher L, Bertekap Jr RL, Knox RJ, Robertson BJ, Harden DG, Morgan DG, Lodge NJ, Dworetzky SI, Olson RE, Macor JE. Bioorg Med Chem Lett, 2013, 23: 1684–1688

    Article  CAS  PubMed  Google Scholar 

  37. Eibl C, Munoz L, Tomassoli I, Stokes C, Papke RL, Gündisch D. Bioorg Med Chem, 2013, 21: 7309–7329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hwang J, Choi J, Park K, Kim W, Song KH, Lee S. Eur J Org Chem, 2015, 2015: 2235–2243

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21503239, 21533011, 21402208, 21403252).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhimin Liu.

Electronic supplementary material

11426_2017_9163_MOESM1_ESM.pdf

Sequential Protocol for C(sp)-H Carboxylation with CO2: KOtBu-Catalyzed C(sp)-H Silylation and KOtBu-Mediated Carboxylation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Yang, P., Gao, X. et al. Sequential protocol for C(sp)–H carboxylation with CO2: KOtBu-catalyzed C(sp)–H silylation and KOtBu-mediated carboxylation. Sci. China Chem. 61, 449–456 (2018). https://doi.org/10.1007/s11426-017-9163-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9163-2

Keywords

Navigation