Skip to main content
Log in

High pressure, a protocol to identify the weak dihydrogen bonds: experimental evidence of C–H···H–B interaction

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Pressure, as a thermodynamic parameter, provides an appropriate method to detect weak intermolecular interactions. The C–H···H–B dihydrogen bond is so weak that the experimental evidence of this interaction is still limited. A combination of in situ high pressure Raman spectra and angle-dispersive X-ray diffraction (ADXRD) experiments was utilized to explore the dihydrogen bonds in dimethylamine borane (DMAB). Both Raman and ADXRD measurements suggested that the crystal structure of DMAB is stable in the pressure region from 1 atm (1 atm=1.01325×105 Pa) to 0.54 GPa. The red shift of CH stretching and CH3 distortion modes gave strong evidence for the existence of C–H···H–B dihydrogen bonds. Further analysis of Raman spectra and Hirshfeld surface confirmed our proposal. This work provided a deeper understanding of dihydrogen bonds. And we wish that high pressure could be applied to identify other unconfirmed hydrogen or dihydrogen bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Lehn JM. Supramolecular Chemistry: Concept and Perspectives. Weinheim Wiley-VCH, 1995

    Book  Google Scholar 

  2. Xu R, Hou B, Wang D, Wang M. Sci China Chem, 2016, 59: 1306–1310

    Article  CAS  Google Scholar 

  3. Wu S, Li J, Liang H, Wang L, Chen X, Jin G, Xu X, Yang HH. Sci China Chem, 2017, 60: 628–634

    Article  CAS  Google Scholar 

  4. Xiao ZY, Wang WQ, Xue RY, Zhao L, Wang L, Zhang YH. Sci China Chem, 2014, 57: 1731–1737

    Article  CAS  Google Scholar 

  5. Peris E, Lee JC, Rambo JR, Eisenstein O, Crabtree RH. J Am Chem Soc, 1995, 117: 3485–3491

    Article  CAS  Google Scholar 

  6. Richardson T, de Gala S, Crabtree RH, Siegbahn PEM. J Am Chem Soc, 1995, 117: 12875–12876

    Article  CAS  Google Scholar 

  7. Belkova NV, Epstein LM, Filippov OA, Shubina ES. Chem Rev, 2016, 116: 8545–8587

    Article  CAS  Google Scholar 

  8. Xiong Z, Yong CK, Wu G, Chen P, Shaw W, Karkamkar A, Autrey T, Jones MO, Johnson SR, Edwards PP, David WIF. Nat Mater, 2008, 7: 138–141

    Article  CAS  Google Scholar 

  9. Chen X, Zhao JC, Shore SG. Acc Chem Res, 2013, 46: 2666–2675

    Article  CAS  Google Scholar 

  10. Alkorta I, Elguero J, Foces-Foces C. Chem Commun, 1996, 14: 1633–1634

    Article  Google Scholar 

  11. (b) Lipkowski P, Grabowski SJ, Robinson TL, Leszczynski J. J Phys Chem A, 2004, 108:10 865–10872

    Google Scholar 

  12. Sedla´k R, Fanfrli´k J, Hnyk D, Hobza P, Lepsik M. J Phys Chem A, 2010, 114: 11304–11311

    Article  Google Scholar 

  13. Shubina ES, Bakhmutova EV, Saitkulova LN, Epstein LM. Mendeleev Commun, 1997, 7: 83–84

    Article  Google Scholar 

  14. Filippov OA, Belkova NV, Epstein LM, Shubina ES. J Organomet Chem, 2013, 747: 30–42

    Article  CAS  Google Scholar 

  15. Xiao G, Yang X, Zhang X, Wang K, Huang X, Ding Z, Ma Y, Zou G, Zou B. J Am Chem Soc, 2015, 137: 10297–10303

    Article  CAS  Google Scholar 

  16. Wang Y, Tan X, Zhang YM, Zhu S, Zhang I, Yu B, Wang K, Yang B, Li M, Zou B, Zhang SXA. J Am Chem Soc, 2015, 137: 931–939

    Article  CAS  Google Scholar 

  17. Dong Y, Xu B, Zhang J, Tan X, Wang L, Chen J, Lv H, Wen S, Li B, Ye L, Zou B, Tian W. Angew Chem Int Ed, 2012, 51: 10782–10785

    Article  CAS  Google Scholar 

  18. Mí nguez Espallargas G, Brammer L, Allan DR, Pulham CR, Robertson N, Warren JE. J Am Chem Soc, 2008, 130: 9058–9071

    Article  Google Scholar 

  19. Wang K, Duan D, Zhou M, Li S, Cui T, Liu B, Liu J, Zou B, Zou G. J Phys Chem B, 2011, 115: 4639–4644

    Article  CAS  Google Scholar 

  20. Allan DR, Clark SJ. Phys Rev Lett, 1999, 82: 3464–3467

    Article  CAS  Google Scholar 

  21. Qi G, Wang K, Yang K, Zou B. J Phys Chem C, 2016, 120: 21293–21298

    Article  CAS  Google Scholar 

  22. Santra B, Klimeš J, Alfè D, Tkatchenko A, Slater B, Michaelides A, Car R, Scheffler M. Phys Rev Lett, 2011, 107: 185701b

    Article  Google Scholar 

  23. Custelcean R, Dreger ZA. J Phys Chem B, 2003, 107: 9231–9235

    Article  CAS  Google Scholar 

  24. Qiao Y, Wang K, Yuan H, Yang K, Zou B. J Phys Chem Lett, 2015, 6: 2755–2760

    Article  CAS  Google Scholar 

  25. Qi G, Wang K, Li X, Zou B. J Phys Chem C, 2016, 120: 13414–13420

    Article  CAS  Google Scholar 

  26. Trudel S, Gilson DFR. Inorg Chem, 2003, 42: 2814–2816

    Article  CAS  Google Scholar 

  27. Najiba S, Chen J. Proc Natl Acad Sci USA, 2012, 109: 19140–19144

    Article  CAS  Google Scholar 

  28. Jaska CA, Manners I. J Am Chem Soc, 2004, 126: 9776–9785

    Article  CAS  Google Scholar 

  29. Chen Y, Fulton JL, Linehan JC, Autrey T. J Am Chem Soc, 2005, 127: 3254–3255

    Article  CAS  Google Scholar 

  30. Jiang Y, Berke H. Chem Commun, 2007, 42: 3571–3573

    Article  Google Scholar 

  31. Aldridge S, Downs AJ, Tang CY, Parsons S, Clarke MC, Johnstone RDL, Robertson HE, Rankin DWH, Wann DA. J Am Chem Soc, 2009, 131: 2231–2243

    Article  CAS  Google Scholar 

  32. Mao HK, Bell PM, Shaner JW, Steinberg DJ. J Appl Phys, 1978, 49: 3276–3283

    Article  CAS  Google Scholar 

  33. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D. High Pressure Res, 1996, 14: 235–248

    Article  Google Scholar 

  34. Potter RG, Somayazulu M, Cody G, Hemley RJ. J Phys Chem C, 2014, 118: 7280–7287

    Article  CAS  Google Scholar 

  35. Aoki K, Baer BJ, Cynn HC, Nicol M. Phys Rev B, 1990, 42: 4298–4303

    Article  CAS  Google Scholar 

  36. Gajda R, Katrusiak A. Cryst Growth Des, 2011, 11: 4768–4774

    Article  CAS  Google Scholar 

  37. McKinnon JJ, Mitchell AS, Spackman MA. Chem Eur J, 1998, 4: 2136–2141

    Article  CAS  Google Scholar 

  38. Spackman MA, Jayatilaka D. CrystEngComm, 2009, 11: 19–32

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21725304, 21673100, 91227202, 11774120, 11774125), the Chang Jiang Scholars Program of China (T2016051), Changbai Mountain Scholars Program (2013007), Program for Innovative Research Team (in Science and Technology) in University of Jilin Province and Graduate Innovation Fund of Jilin University (2017050). ADXRD experiments were performed at Beijing Synchrotron Radiation Facility (4W2 beamline), which is supported by Chinese Academy of Sciences (KJCX2-SW-N20, KJCX2-SW-N03). Portions of this work were carried out at the 15U1 beamline of the Shanghai Synchrotron Radiation Facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Bo Zou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, G., Wang, K., Xiao, G. et al. High pressure, a protocol to identify the weak dihydrogen bonds: experimental evidence of C–H···H–B interaction. Sci. China Chem. 61, 276–280 (2018). https://doi.org/10.1007/s11426-017-9152-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9152-8

Keywords

Navigation