Skip to main content
Log in

Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Two novel AIE-active salicylaldehyde azine (SAA) derivatives with a typical excited-state intramolecular proton transfer (ESIPT) process are prepared by introducing electron-withdrawing and donating groups at para-position of phenolic hydroxyl group (CN-SAA and TPA-SAA). The effect of the proton activity in SAA framework on their optical behaviors is investigated spectroscopically. The results from NMR and solvation measurements show that the proton of phenolic hydroxyl group has higher activity when there are electron-withdrawing groups, and the absorption and fluorescence spectra in buffers with different pH also provide the same results. After inviting F as a nucleophilic probe, this proton activity difference in CN-SAA and TPA-SAA becomes more obvious. The potential application of both molecules is investigated. TPA-SAA exhibits good quantitative sensing ability towards F with a fluorescence “turn-on” mode, whereas the aggregates of TPA-SAA can selectively and sensitively detect Cu2+ in aqueous solution. From these results, a structure-property relationship is established: the occurrence of ESIPT process will become much easier when linking electron-withdrawing groups at the para-position of phenolic hydroxyl group (e.g., CN-SAA), and it is better to introduce electron-donating groups to enhance the sensing ability towards ions (e.g., TPA-SAA). This work will provide guidance for further design and preparation of AIE-active luminogens with ESIPT process for sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernández-Suárez M, Ting AY. Nat Rev Mol Cell Biol, 2008, 9: 929–943

    Article  Google Scholar 

  2. Yuan L, Lin W, Zheng K, He L, Huang W. Chem Soc Rev, 2013, 42: 622–661

    Article  CAS  Google Scholar 

  3. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M. Chem Soc Rev, 2007, 36: 993–1017

    Article  CAS  Google Scholar 

  4. Ding D, Li K, Liu B, Tang BZ. Acc Chem Res, 2013, 46: 2441–2453

    Article  CAS  Google Scholar 

  5. Förster T, Kasper K. Z für Physikal Chim, 1954, 1: 275–277

    Article  Google Scholar 

  6. Birks J B. Photophysics of Aromatic Molecules. London: Wiley, 1970

    Google Scholar 

  7. Luo J, Xie Z, Lam JWY, Cheng L, Tang BZ, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D. Chem Commun, 2001, 1740–1741

    Google Scholar 

  8. Hong Y, Lam JWY, Tang BZ. Chem Soc Rev, 2011, 40: 5361–5388

    Article  CAS  Google Scholar 

  9. Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, Kwok HS, Ma Y, Tang BZ. Adv Mater, 2010, 22: 2159–2163

    Article  CAS  Google Scholar 

  10. Leung NLC, Xie N, Yuan W, Liu Y, Wu Q, Peng Q, Miao Q, Lam JWY, Tang BZ. Chem Eur J, 2014, 20: 15349–15353

    Article  CAS  Google Scholar 

  11. Bu F, Wang E, Peng Q, Hu R, Qin A, Zhao Z, Tang BZ. Chem Eur J, 2015, 21: 4440–4449

    Article  CAS  Google Scholar 

  12. Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718–11940

    Article  CAS  Google Scholar 

  13. Mei J, Hong Y, Lam JWY, Qin A, Tang Y, Tang BZ. Adv Mater, 2014, 26: 5429–5479

    Article  CAS  Google Scholar 

  14. Guo J, Li XL, Nie H, Luo W, Gan S, Hu S, Hu R, Qin A, Zhao Z, Su SJ, Tang BZ. Adv Funct Mater, 2017, 27: 1606458

    Article  Google Scholar 

  15. Chen S, Hong Y, Liu Y, Liu J, Leung CWT, Li M, Kwok RTK, Zhao E, Lam JWY, Yu Y, Tang BZ. J Am Chem Soc, 2013, 135: 4926–4929

    Article  CAS  Google Scholar 

  16. Lou XD, Zhao ZJ, Tang BZ. Small, 2016, 12: 6430–6450

    Article  CAS  Google Scholar 

  17. Kwok RTK, Leung CWT, Lam JWY, Tang BZ. Chem Soc Rev, 2015, 44: 4228–4238

    Article  CAS  Google Scholar 

  18. Wang X, Hu J, Zhang G, Liu S. J Am Chem Soc, 2014, 136: 9890–9893

    Article  CAS  Google Scholar 

  19. Qin W, Ding D, Liu J, Yuan WZ, Hu Y, Liu B, Tang BZ. Adv Funct Mater, 2012, 22: 771–779

    Article  CAS  Google Scholar 

  20. Zhang J, Ma S, Fang H, Xu B, Sun H, Chan I, Tian W. Mater Chem Front, 2017, 1: 1422–1429

    Article  CAS  Google Scholar 

  21. Chu J, Lv Q, Guo C, Xu D, Wang K, Liu M, Huang H, Zhang X, Wei Y. Sci China Chem, 2016, 59: 1003–1009

    Article  CAS  Google Scholar 

  22. Niu J, Gao Y, You Y, Zhu Y, Sun J, Tang BZ. Sci China Chem, 2016, 59: 218–224

    Article  CAS  Google Scholar 

  23. Kwon JE, Park SY. Adv Mater, 2011, 23: 3615–3642

    Article  CAS  Google Scholar 

  24. Tang W, Xiang Y, Tong A. J Org Chem, 2009, 74: 2163–2166

    Article  CAS  Google Scholar 

  25. Wei R, Song P, Tong A. J Phys Chem C, 2013, 117: 3467–3474

    Article  CAS  Google Scholar 

  26. Chen X, He L, Wang Y, Liu B, Tang Y. Anal Chim Acta, 2014, 847: 55–60

    Article  CAS  Google Scholar 

  27. Gong WT, Zhang QL, Shang L, Gao B, Ning GL. Sensors Actuat B-Chem, 2013, 177: 322–326

    Article  CAS  Google Scholar 

  28. Peng L, Zhou Z, Wei R, Li K, Song P, Tong A. Dyes Pigments, 2014, 108: 24–31

    Article  CAS  Google Scholar 

  29. Peng L, Gao M, Cai X, Zhang R, Li K, Feng G, Tong A, Liu B. J Mater Chem B, 2015, 3: 9168–9172

    Article  CAS  Google Scholar 

  30. Chen X, Peng L, Feng M, Xiang Y, Tong A, He L, Liu B, Tang Y. J Lumin, 2017, 186: 301–306

    Article  CAS  Google Scholar 

  31. Li XY, Chen YM, Cui N, Zhang WY, Wang ZM. Chem J Chin Univ, 2017, 38: 448–454

    CAS  Google Scholar 

  32. Keshav K, Kumawat MK, Srivastava R, Ravikanth M. Mater Chem Front, 2017, 1: 1207–1216

    Article  CAS  Google Scholar 

  33. Gao M, Hu Q, Feng G, Tang BZ, Liu B. J Mater Chem B, 2014, 2: 3438–3442

    Article  CAS  Google Scholar 

  34. Zhang R, Gao M, Bai S, Liu B. J Mater Chem B, 2015, 3: 1590–1596

    Article  CAS  Google Scholar 

  35. Wang Z, Nie H, Yu Z, Qin A, Zhao Z, Tang BZ. J Mater Chem C, 2015, 3: 9103–9111

    Article  CAS  Google Scholar 

  36. Amalraj A, Pius A. J Fluor Chem, 2015, 178: 73–78

    Article  CAS  Google Scholar 

  37. Zhang X, Shi J, Shen G, Gou F, Cheng J, Zhou X, Xiang H. Mater Chem Front, 2017, 1: 1041–1050

    Article  CAS  Google Scholar 

  38. Yeh JT, Chen WC, Liu SR, Wu SP. New J Chem, 2014, 38: 4434–4439

    Article  CAS  Google Scholar 

  39. Gupta AS, Paul K, Luxami V. Sensors Actuat B-Chem, 2017, 246: 653–661

    Article  Google Scholar 

  40. Wang Z, Gui C, Zhao E, Wang J, Li X, Qin A, Zhao Z, Yu Z, Tang BZ. ACS Appl Mater Interf, 2016, 8: 10193–10200

    Article  CAS  Google Scholar 

  41. Hu R, Li S, Zeng Y, Chen J, Wang S, Li Y, Yang G. Phys Chem Chem Phys, 2011, 13: 2044–2051

    Article  CAS  Google Scholar 

  42. Li M, Ren W, He Z, Zhu Y. J Clust Sci, 2017, 28: 2111–2122

    Article  CAS  Google Scholar 

  43. Hu R, Lam JWY, Yu Y, Sung HHY, Williams ID, Yuen MMF, Tang BZ. Polym Chem, 2013, 4: 95–105

    Article  CAS  Google Scholar 

  44. Zhang X, Xiao Y, Qian X. Angew Chem Int Ed, 2008, 47: 8025–8029

    Article  CAS  Google Scholar 

  45. Ma X, Cheng J, Liu J, Zhou X, Xiang H. New J Chem, 2015, 39: 492–500

    Article  CAS  Google Scholar 

  46. Dalapati S, Jana S, Guchhait N. Spectrochim Acta Part A-Mol Biomol Spectr, 2014, 129: 499–508

    Article  CAS  Google Scholar 

  47. Liu K, Zhao X, Liu Q, Huo J, Fu H, Wang Y. J Photochem PhotoBiol B-Biol, 2014, 138: 75–79

    Article  CAS  Google Scholar 

  48. Hu R, Leung NLC, Tang BZ. Chem Soc Rev, 2014, 43: 4494–4562

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51673118, 51273053), the Key Project of the Ministry of Science and Technology of China (2013CB834702), the Natural Science Fund of Guangdong Province (2014A030313659, 2014A030306035, 2016A030312002), the Fundamental Research Funds for the Central Universities (2015ZY013), the Innovation and Technology Commission of Hong Kong (ITC-CNERC14SC01), the Science and Technology Plan of Shenzhen (JCYJ20160428150429072), the Fundamental Research Funds for the Central Universities (2017JQ013), and Guangdong Innovative Research Team Program (201101C0105067115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zujin Zhao or Ben Zhong Tang.

Electronic supplementary material

11426_2017_9147_MOESM1_ESM.docx

Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhou, F., Wang, J. et al. Electronic effect on the optical properties and sensing ability of AIEgens with ESIPT process based on salicylaldehyde azine. Sci. China Chem. 61, 76–87 (2018). https://doi.org/10.1007/s11426-017-9147-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9147-0

Keywords

Navigation