Skip to main content
Log in

Can Flory-Stockmayer theory be applied to predict conventional free radical polymerization of multivinyl monomers? A study via Monte Carlo simulations

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The conventional free radical polymerization (FRP) of multivinyl monomers (MVMs) inevitably leads to gelation even at low monomer conversion resulting in difficulties to control and monitor the reaction process. Flory and Stockmayer (F-S theory) studied it based on two fundamental assumptions: (1) independent and equivalent vinyl groups; (2) no intramolecular cyclization. However, until now its applicability to FRP of MVMs (especially regarding the extent of intramolecular cyclization) is still controversial. In this paper, Monte Carlo simulations are used to study FRP of divinyl monomers by two kinetic models: with/without cyclization models. The results of the simulations are compared with the calculated gel points based on F-S theory and the experimental data. It is found that the intramolecular cyclization has a negligible impact on the polymerization process and the gel point before gelation, which are in agreement with the prediction by F-S theory, but the effect becomes significant above the gel points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stockmayer W H. J Chem Phys, 1944, 12: 125–131

    Article  CAS  Google Scholar 

  2. Flory PJ. J Am Chem Soc, 1941, 63: 3083–3090

    Article  CAS  Google Scholar 

  3. Walling C. J Am Chem Soc, 1945, 67: 441–447

    Article  Google Scholar 

  4. Dotson NA, Diekmann T, Macosko CW, Tirrell M. Macromolecules, 1992, 25: 4490–4500

    Article  CAS  Google Scholar 

  5. Landin DT, Macosko CW. Macromolecules, 1988, 851: 846–851

    Article  Google Scholar 

  6. Matsumoto A, Okuno S, Aota H. Macromol Symp, 1995, 93: 1–10

    Article  CAS  Google Scholar 

  7. Matsumoto A, Tanigughi A. Polym J, 1999, 31: 711–713

    Article  CAS  Google Scholar 

  8. Ide N, Fukuda T. Macromolecules, 1999, 32: 95–99

    Article  CAS  Google Scholar 

  9. Ide N, Fukuda T. Macromolecules, 1997, 30: 4268–4271

    Article  CAS  Google Scholar 

  10. Yu Q, Zhou M, Ding Y, Jiang B, Zhu S. Polymer, 2007, 48: 7058–7064

    Article  CAS  Google Scholar 

  11. Yu Q, Zhu Y, Ding Y, Zhu S. Macromol Chem Phys, 2008, 209: 551–556

    Article  CAS  Google Scholar 

  12. Gao H, Matyjaszewski K. Prog Polymer Sci, 2009, 34: 317–350

    Article  CAS  Google Scholar 

  13. Gao H, Polanowski P, Matyjaszewski K. Macromolecules, 2009, 42: 5925–5932

    Article  CAS  Google Scholar 

  14. Hamzehlou S, Reyes Y, Leiza JR. Macromolecules, 2013, 46: 9064–9073

    Article  CAS  Google Scholar 

  15. Mohammadi Y, Najafi M, Haddadi-Asl V. Macromol Theor Simul, 2005, 14: 325–336

    Article  CAS  Google Scholar 

  16. Mohammadi Y, Pakdel AS, Saeb MR, Boodhoo K. Chem Eng J, 2014, 247: 231–240

    Article  CAS  Google Scholar 

  17. Gao H, Oakley LH, Konstantinov IA, Arturo SG, Broadbelt LJ. Ind Eng Chem Res, 2015, 54: 11975–11985

    Article  CAS  Google Scholar 

  18. Tripathi AK, Tsavalas JG, Sundberg DC. Macromolecules, 2015, 48: 184–197

    Article  CAS  Google Scholar 

  19. Dusek K, Spevacek J. Polymer, 1980, 21: 750–756

    Article  CAS  Google Scholar 

  20. Elliott JE, Bowman CN. Macromolecules, 1999, 32: 8621–8628

    Article  CAS  Google Scholar 

  21. Elliott JE, Bowman CN. Macromolecules, 2002, 35: 7125–7131

    Article  CAS  Google Scholar 

  22. Zhu S, Hamielec AE, Pelton RH. Makromol Chem Theor Simul, 1993, 2: 587–604

    Article  CAS  Google Scholar 

  23. Polanowski P, Jeszka JK, Matyjaszewski K. Polymer, 2010, 51: 6084–6092

    Article  CAS  Google Scholar 

  24. Ghiass M, Dabir B, Nikazar M, Rey AD, Hamid M. Iran Polym J, 2001, 10: 305–313

    CAS  Google Scholar 

  25. Tripathi AK, Sundberg DC. Macromol Theor Simul, 2015, 24: 52–64

    Article  CAS  Google Scholar 

  26. Zheng Y, Cao H, Newland B, Dong Y, Pandit A, Wang W. J Am Chem Soc, 2011, 133: 13130–13137

    Article  CAS  Google Scholar 

  27. Gillespie DT. J Phys Chem, 1977, 81: 2340–2361

    Article  CAS  Google Scholar 

  28. Gillespie DT. Annu Rev Phys Chem, 2007, 58: 35–55

    Article  CAS  Google Scholar 

  29. He J, Zhang H, Chen J, Yang Y. Macromolecules, 1997, 30: 8010–8018

    Article  CAS  Google Scholar 

  30. Dias RCS, Costa MRPFN. Macromolecules, 2003, 36: 8853–8863

    Article  CAS  Google Scholar 

  31. He J, Zhang H, Yang Y. Macromol Theor Simul, 1995, 4: 811–819

    Article  CAS  Google Scholar 

  32. Polanowski P, Jeszka JK, Krysiak K, Matyjaszewski K. Polymer, 2015, 79: 171–178

    Article  CAS  Google Scholar 

  33. Hoshen J, Kopelman R. Phys Rev B, 1976, 14: 3438–3445

    Article  CAS  Google Scholar 

  34. Shy LY, Leung YK, Eichinger BE. Macromolecules, 1985, 18: 983–986

    Article  CAS  Google Scholar 

  35. Gupta AM, Hendrickson RC, Macosko CW. J Chem Phys, 1991, 95: 2097–2108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51573129), Science Foundation Ireland Principal Investigator Award (13/IA/1962), Investigator Award (12/IP/1688) and Health Research Board (HRA-POR-2013-412). This work was carried out at National Supercomputer Center in Tianjin, and the calculations were performed on TianHe-1 (A). The authors are very grateful to Prof. Krzysztof Matyjaszewski, Carnegie Mellon University, for his valuable comments and advice on this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongsheng Gao or Wenxin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, J., Gao, Y., Zhang, Z. et al. Can Flory-Stockmayer theory be applied to predict conventional free radical polymerization of multivinyl monomers? A study via Monte Carlo simulations. Sci. China Chem. 61, 319–327 (2018). https://doi.org/10.1007/s11426-017-9146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9146-6

Keywords

Navigation