Skip to main content
Log in

Theoretical insight into methanol steam reforming on indium oxide with different coordination environments

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Indium oxide (In2O3) has demonstrated to be an effective non-noble metal catalyst for methanol steam reforming reaction (MSR). However, the reaction mechanism of MSR and crucial structure-activity relations determining the catalytic performance of In2O3 are still not fully understood yet. Using density functional theory (DFT) calculation, we systematically investigate the MSR process over a high-index In2O3(211) and a favoured catalytic cycle of MSR is determined. The results show that In2O3(211) possesses excellent dehydrogenation and oxidizing ability, on which CH3OH can readily adsorb on the In4c site and be easily activated by the reactive lattice oxygens, resulting in a total oxidation into CO2 rather than CO, while the H2 formation through surface H–H coupling limits the overall MSR activity because of the strong H adsorption on the two-coordinated lattice O (O2c). Our analyses show that the relatively inert three-coordinated lattice O (O3c) could play an important catalytic role. To uncover the influence of the local coordination of surface In atoms and lattice O on the catalytic activity, we evaluate the activity trend of several types of In2O3 surfaces including (211), (111), and (100) by examining the rate-limiting, which reveals the following activity order: (211)>(111)>(100). These findings provide an in-depth understanding on the MSR reaction mechanism over In2O3 catalysts and some basic structure-activity relations at the atomic scale, could facilitate the rational design of In2O3-based catalysts for MSR by controlling the local coordination environment of surface active sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muradov N, Veziroglu T. Int J Hydrogen Energy, 2008, 33: 6804–6839

    Article  CAS  Google Scholar 

  2. Zhang S, Wang X, Xu X, Li P. Int J Hydrogen Energy, 2017, 42: 1932–1941

    Article  CAS  Google Scholar 

  3. Xu X, Shuai K, Xu B. Catalysts, 2017, 7: 183–197

    Article  Google Scholar 

  4. Palo DR, Dagle RA, Holladay JD. Chem Rev, 2007, 107: 3992–4021

    Article  CAS  Google Scholar 

  5. Iulianelli A, Ribeirinha P, Mendes A, Basile A. Renew Sustain Energy Rev, 2014, 29: 355–368

    Article  CAS  Google Scholar 

  6. Rodríguez-Lugo RE, Trincado M, Vogt M, Tewes F, Santiso-Quinones G, Grützmacher H. Nat Chem, 2013, 5: 342–347

    Article  Google Scholar 

  7. Nielsen M, Alberico E, Baumann W, Drexler HJ, Junge H, Gladiali S, Beller M. Nature, 2013, 495: 85–89

    Article  CAS  Google Scholar 

  8. Yu KMK, Tong W, West A, Cheung K, Li T, Smith G, Guo Y, Tsang SCE. Nat Commun, 2012, 3: 1230–1236

    Article  Google Scholar 

  9. Kusche M, Enzenberger F, Bajus S, Niedermeyer H, Bösmann A, Kaftan A, Laurin M, Libuda J, Wasserscheid P. Angew Chem Int Ed, 2013, 52: 5028–5032

    Article  CAS  Google Scholar 

  10. Rameshan C, Stadlmayr W, Weilach C, Penner S, Lorenz H, Hävecker M, Blume R, Rocha T, Teschner D, Knop-Gericke A, Schlögl R, Memmel N, Zemlyanov D, Rupprechter G, Klötzer B. Angew Chem Int Ed, 2010, 49: 3224–3227

    Article  CAS  Google Scholar 

  11. Rameshan C, Stadlmayr W, Penner S, Lorenz H, Memmel N, Hävecker M, Blume R, Teschner D, Rocha T, Zemlyanov D, Knop-Gericke A, Schlögl R, Klötzer B. Angew Chem Int Ed, 2012, 51: 3002–3006

    Article  CAS  Google Scholar 

  12. Liu Y, Hayakawa T, Suzuki K, Hamakawa S. Catal Commun, 2001, 2: 195–200

    Article  CAS  Google Scholar 

  13. Men Y, Gnaser H, Zapf R, Hessel V, Ziegler C. Catal Commun, 2004, 5: 671–675

    Article  CAS  Google Scholar 

  14. Friedrich M, Penner S, Heggen M, Armbrüster M. Angew Chem Int Ed, 2013, 52: 4389–4392

    Article  CAS  Google Scholar 

  15. Yi N, Si R, Saltsburg H, Flytzani-Stephanopoulos M. Appl Catal B-Environ, 2010, 95: 87–92

    Article  CAS  Google Scholar 

  16. Barbosa RL, Papaefthimiou V, Law YT, Teschner D, Hävecker M, Knop-Gericke A, Zapf R, Kolb G, Schlögl R, Zafeiratos S. J Phys Chem C, 2013, 117: 6143–6150

    Article  CAS  Google Scholar 

  17. Liu D, Men Y, Wang J, Kolb G, Liu X, Wang Y, Sun Q. Int J Hydrogen Energy, 2016, 41: 21990–21999

    Article  CAS  Google Scholar 

  18. Neramittagapong A, Hoshino S, Mori T, Kubo J, Morikawa Y. Chem Lett, 2002, 31: 1078–1079

    Article  Google Scholar 

  19. Lorenz H, Friedrich M, Armbrüster M, Klötzer B, Penner S. J Catal, 2013, 297: 151–154

    Article  CAS  Google Scholar 

  20. Lorenz H, Jochum W, Klötzer B, Stöger-Pollach M, Schwarz S, Pfaller K, Penner S. Appl Catal A, 2008, 347: 34–42

    Article  CAS  Google Scholar 

  21. Bielz T, Lorenz H, Amann P, Klo¨tzer B, Penner S. J Phys Chem C, 2011, 115: 6622–6628

    Article  CAS  Google Scholar 

  22. Umegaki T, Kuratani K, Yamada Y, Ueda A, Kuriyama N, Kobayashi T, Xu Q. J Power Sources, 2008, 179: 566–570

    Article  CAS  Google Scholar 

  23. Lin S, Xie D. Chin J Chem, 2012, 30: 2036–2040

    Article  CAS  Google Scholar 

  24. Ye J, Liu C, Mei D, Ge Q. ACS Catal, 2013, 3: 1296–1306

    Article  CAS  Google Scholar 

  25. Bao H, Zhang W, Hua Q, Jiang Z, Yang J, Huang W. Angew Chem Int Ed, 2011, 50: 12294–12298

    Article  CAS  Google Scholar 

  26. Zhou X, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L. Angew Chem, 2012, 124: 182–186

    Article  Google Scholar 

  27. Laursen S, Combita D, Hungría AB, Boronat M, Corma A. Angew Chem Int Ed, 2012, 51: 4190–4193

    Article  CAS  Google Scholar 

  28. Pan J, Liu G, Lu GQM, Cheng HM. Angew Chem Int Ed, 2011, 50: 2133–2137

    Article  CAS  Google Scholar 

  29. Zhang B, Wang D, Hou Y, Yang S, Yang XH, Zhong JH, Liu J, Wang HF, Hu P, Zhao HJ, Yang HG. Sci Rep, 2013, 3: 1836

    Article  Google Scholar 

  30. Huang X, Zhao Z, Fan J, Tan Y, Zheng N. J Am Chem Soc, 2011, 133: 4718–4721

    Article  CAS  Google Scholar 

  31. Zhou ZY, Huang ZZ, Chen DJ, Wang Q, Tian N, Sun SG. Angew Chim Int Ed, 2010, 49: 411–414

    Article  CAS  Google Scholar 

  32. Zhou ZY, Tian N, Li JT, Broadwell I, Sun SG. Chem Soc Rev, 2011, 40: 4167–4185

    Article  CAS  Google Scholar 

  33. Zhou ZY, Tian N, Huang ZZ, Chen DJ, Sun SG. Faraday Discuss, 2009, 140: 81–92

    Article  Google Scholar 

  34. Mahmoud MA, Tabor CE, El-Sayed MA, Ding Y, Wang ZL. J Am Chem Soc, 2008, 130: 4590–4591

    Article  CAS  Google Scholar 

  35. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL. Science, 2007, 316: 732–735

    Article  CAS  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865–3868

    Article  CAS  Google Scholar 

  37. Kresse G, Furthmüller J. Comp Mater Sci, 1996, 6: 15–50

    Article  CAS  Google Scholar 

  38. Kresse G, Furthmüller J. Phys Rev B, 1996, 54: 11169–11186

    Article  CAS  Google Scholar 

  39. Kresse G, Joubert D. Phys Rev B, 1999, 59: 4718–4721

    Google Scholar 

  40. Alavi A, Hu P, Deutsch T, Silvestrelli PL, Hutter J. Phys Rev Lett, 1998, 80: 3650–3653

    Article  CAS  Google Scholar 

  41. Lin S, Xie D, Guo H. ACS Catal, 2011, 1: 1263–1271

    Article  CAS  Google Scholar 

  42. Sun X, Cao X, Hu P. Sci China Chem, 2015, 58: 553–564

    Article  CAS  Google Scholar 

  43. Gu XK, Li WX. J Phy Chem C, 2011, 241: 43–43

    Google Scholar 

  44. Wang HF, Kavanagh R, Guo YL, Guo Y, Lu G, Hu P. J Catal, 2012, 296: 110–119

    Article  CAS  Google Scholar 

  45. Li HY, Wang HF, Gong XQ, Guo YL, Guo Y, Lu G, Hu P. Phys Rev B, 2009, 79: 193401–193404

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21333003, 21622305), Young Elite Scientist Sponsorship Program by China Association for Science and Technology (YESS20150131), “Shu Guang” project supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (13SG30), and the Fundamental Research Funds for the Central Universities (WJ616007). We also cordially thank Prof. Huagui Yang and Dr. Xiaohui Liu of East China University of Science and Technology for helpful discussions on the MSR experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Haifeng Wang or P. Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, H. & Hu, P. Theoretical insight into methanol steam reforming on indium oxide with different coordination environments. Sci. China Chem. 61, 336–343 (2018). https://doi.org/10.1007/s11426-017-9139-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9139-x

Keywords

Navigation