Skip to main content

Nanoscale 3D ordered polymer networks

Abstract

Structures having nanoscale 3D geometries are valuable as multifunctional materials, where multi-continuous microphases can synergistically influence mechanical, optical, transport and other properties. Such very high interface surface to volume ratio structures occur in a variety of materials including natural materials such as butter fly wings and sea urchin exoskeletons and in synthetic self-assembled structures such as surfactant/water systems and block polymers. Quantitative morphological characterization of such complex geometric structures is quite challenging. Unit cell sizes range from 10–300 nm with corresponding feature sizes on the 2–50 nm scale. Since these nanoscale network structures are bicontinuous, when one constituent is removed, the structure is still self supporting. Removal of one component produces a nanoporous material that may be in-filled with another component, or the surfaces of the nanopores can be coated with ultra-thin layers by atomic layer deposition to offer multifunctional capabilities. Due to the ability to individually tailor the properties of the network(s) and matrix, for example, to create strong dielectric or impedance contrast, such spatially periodic structures are excellent for the interference of waves (electromagnetic for photonic applications and acoustic for phononic applications) that can lead to bandgaps and hence the control of wave propagation in the material. This mini-review will focus on networks formed by bottom up self assembly of block polymers. In addition to structural issues, we emphasize the special physical properties related to bi- or tri-continuous networks.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Alward DB, Kinning DJ, Thomas EL, Fetters LJ. Macromolecules, 1986, 19: 215–224

    CAS  Article  Google Scholar 

  2. 2

    Thomas EL, Alward DB, Kinning DJ, Martin DC, Handlin DL, Fetters LJ. Macromolecules, 1986, 19: 2197–2202

    CAS  Article  Google Scholar 

  3. 3

    Wohlgemuth M, Yufa N, Hoffman J, Thomas EL. Macromolecules, 2001, 34: 6083–6089

    CAS  Article  Google Scholar 

  4. 4

    Epps TH, Cochran EW, Bailey TS, Waletzko RS, Hardy CM, Bates FS. Macromolecules, 2004, 37: 8325–8341

    CAS  Article  Google Scholar 

  5. 5

    Jain A, Toombes GES, Hall LM, Mahajan S, Garcia CBW, Probst W, Gruner SM, Wiesner U. Angew Chem Int Ed, 2005, 44: 1226–1229

    CAS  Article  Google Scholar 

  6. 6

    Bluemle MJ, Fleury G, Lodge TP, Bates FS. Soft Matter, 2009, 5: 1587–1590

    CAS  Article  Google Scholar 

  7. 7

    Hasegawa H, Tanaka H, Yamasaki K, Hashimoto T. Macromolecules, 1987, 20: 1651–1662

    CAS  Article  Google Scholar 

  8. 8

    Hajduk DA, Harper PE, Gruner SM, Honeker CC, Kim G, Thomas EL, Fetters LJ. Macromolecules, 1994, 27: 4063–4075

    CAS  Article  Google Scholar 

  9. 9

    Schulz MF, Bates FS, Almdal K, Mortensen K. Phys Rev Lett, 1994, 73: 86–89

    CAS  Article  Google Scholar 

  10. 10

    Hajduk DA, Harper PE, Gruner SM, Honeker CC, Thomas EL, Fetters LJ. Macromolecules, 1995, 28: 2570–2573

    CAS  Article  Google Scholar 

  11. 11

    Winey KI, Thomas EL, Fetters LJ. Macromolecules, 1992, 25: 422–428

    CAS  Article  Google Scholar 

  12. 12

    Matsushita Y, Tamura M, Noda I. Macromolecules, 1994, 27: 3680–3682

    CAS  Article  Google Scholar 

  13. 13

    Chu CY, Lin WF, Tsai JC, Lai CS, Lo SC, Chen HL, Hashimoto T. Macromolecules, 2012, 45: 2471–2477

    CAS  Article  Google Scholar 

  14. 14

    Li Z, Hur K, Sai H, Higuchi T, Takahara A, Jinnai H, Gruner SM, Wiesner U. Nat Commun, 2014, 5: 3247

    Google Scholar 

  15. 15

    Chu CY, Jiang X, Jinnai H, Pei RY, Lin WF, Tsai JC, Chen HL. Soft Matter, 2015, 11: 1871–1876

    CAS  Article  Google Scholar 

  16. 16

    Takagi H, Yamamoto K, Okamoto S. Europhys Lett, 2015, 110: 48003

    Article  Google Scholar 

  17. 17

    Cao X, Xu D, Yao Y, Han L, Terasaki O, Che S. Chem Mater, 2016, 28: 3691–3702

    CAS  Article  Google Scholar 

  18. 18

    Asai Y, Suzuki J, Aoyama Y, Nishioka H, Takano A, Matsushita Y. Macromolecules, 2017, 50: 5402–5411

    CAS  Article  Google Scholar 

  19. 19

    Seddon JM. Biochim Biophys Acta, 1990, 1031: 1–69

    CAS  Article  Google Scholar 

  20. 20

    Matsushita Y, Suzuki J, Seki M. Phys B-Condens Matter, 1998, 248: 238–242

    CAS  Article  Google Scholar 

  21. 21

    Shefelbine TA, Vigild ME, Matsen MW, Hajduk DA, Hillmyer MA, Cussler EL, Bates FS. J Am Chem Soc, 1999, 121: 8457–8465

    CAS  Article  Google Scholar 

  22. 22

    Matsushita Y, Hayashida K, Dotera T, Takano A. J Phys-Condens Matter, 2011, 23: 284111

    Article  Google Scholar 

  23. 23

    Finnefrock AC, Ulrich R, Toombes GES, Gruner SM, Wiesner U. J Am Chem Soc, 2003, 125: 13084–13093

    CAS  Article  Google Scholar 

  24. 24

    Bailey TS, Hardy CM, Epps TH, Bates FS. Macromolecules, 2002, 35: 7007–7017

    CAS  Article  Google Scholar 

  25. 25

    Epps TH, Cochran EW, Hardy CM, Bailey TS, Waletzko RS, Bates FS. Macromolecules, 2004, 37: 7085–7088

    CAS  Article  Google Scholar 

  26. 26

    Takenaka M, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Shimizu H, Kim MI, Hasegawa H. Macromolecules, 2007, 40: 4399–4402

    CAS  Article  Google Scholar 

  27. 27

    Kim MI, Wakada T, Akasaka S, Nishitsuji S, Saijo K, Hasegawa H, Ito K, Takenaka M. Macromolecules, 2008, 41: 7667–7670

    CAS  Article  Google Scholar 

  28. 28

    Meier DJ. J Polym Sci, 2007, 26: 81–98

    Google Scholar 

  29. 29

    Helfand E. Macromolecules, 1975, 8: 552–556

    Article  Google Scholar 

  30. 30

    Leibler L. Macromolecules, 1980, 13: 1602–1617

    CAS  Article  Google Scholar 

  31. 31

    Matsen MW, Schick M. Phys Rev Lett, 1994, 72: 2660–2663

    CAS  Article  Google Scholar 

  32. 32

    Dotera T. Phys Rev Lett, 2002, 89: 205502

    Article  Google Scholar 

  33. 33

    Tyler CA, Morse DC. Phys Rev Lett, 2005, 94: 208302

    Article  Google Scholar 

  34. 34

    Lescanec RL, Fetters LJ, Thomas EL. Macromolecules, 1998, 31: 1680–1685

    CAS  Article  Google Scholar 

  35. 35

    Thomas EL, Anderson DM, Henkee CS, Hoffman D. Nature, 1988, 334: 598–601

    CAS  Article  Google Scholar 

  36. 36

    Schoen AH. Infinite Periodic Minimal Surfaces Without Self-Intersections. NASA Tech Note, 1970

    Google Scholar 

  37. 37

    Anderson DM, Davis HT, Nitsche JCC, Scriven LE. Adv Chem Phys, 1990, 77: 337–396

    CAS  Google Scholar 

  38. 38

    Grosse-Braukmann K. Interf Focus, 2012, 582–588

    Google Scholar 

  39. 39

    Matsen MW, Bates FS. Macromolecules, 1996, 29: 7641–7644

    CAS  Article  Google Scholar 

  40. 40

    Meuler AJ, Hillmyer MA, Bates FS. Macromolecules, 2009, 42: 7221–7250

    CAS  Article  Google Scholar 

  41. 41

    Laurer JH, Hajduk DA, Fung JC, Sedat JW, Smith SD, Gruner SM, Agard DA, Spontak RJ. Macromolecules, 1997, 30: 3938–3941

    CAS  Article  Google Scholar 

  42. 42

    Jinnai H, Nishikawa Y, Spontak RJ, Smith SD, Agard DA, Hashimoto T. Phys Rev Lett, 2000, 84: 518–521

    CAS  Article  Google Scholar 

  43. 43

    Jinnai H, Kajihara T, Watashiba H, Nishikawa Y, Spontak RJ. Phys Rev E, 2001, 64: 069903

    Article  Google Scholar 

  44. 44

    Jung J, Park HW, Lee J, Huang H, Chang T, Rho Y, Ree M, Sugimori H, Jinnai H. Soft Matter, 2011, 7: 10424–10428

    CAS  Article  Google Scholar 

  45. 45

    Dair BJ, Honeker CC, Alward DB, Avgeropoulos A, Hadjichristidis N, Fetters LJ, Capel M, Thomas EL. Macromolecules, 1999, 32: 8145–8152

    CAS  Article  Google Scholar 

  46. 46

    Honeker CC, Thomas EL. Chem Mater, 1996, 8: 1702–1714

    CAS  Article  Google Scholar 

  47. 47

    Meuler AJ, Fleury G, Hillmyer MA, Bates FS. Macromolecules, 2008, 41: 5809–5817

    CAS  Article  Google Scholar 

  48. 48

    Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Valdevit L, Carter WB. Science, 2011, 334: 962–965

    CAS  Article  Google Scholar 

  49. 49

    Chan VZ, Hoffman J, Lee VY, Iatrou H, Avgeropoulos A, Hadjichristidis N, Miller RD, Thomas EL. Science, 1999, 286: 1716–1719

    CAS  Article  Google Scholar 

  50. 50

    Hsueh HY, Chen HY, She MS, Chen CK, Ho RM, Gwo S, Hasegawa H, Thomas EL. Nano Lett, 2010, 10: 4994–5000

    CAS  Article  Google Scholar 

  51. 51

    Hsueh HY, Huang YC, Ho RM, Lai CH, Makida T, Hasegawa H. Adv Mater, 2011, 23: 3041–3046

    CAS  Article  Google Scholar 

  52. 52

    Ross CA, Berggren KK, Cheng JY, Jung YS, Chang JB. Adv Mater, 2014, 26: 4386–4396

    CAS  Article  Google Scholar 

  53. 53

    Widin JM, Schmitt AK, Schmitt AL, Im K, Mahanthappa MK. J Am Chem Soc, 2012, 134: 3834–3844

    CAS  Article  Google Scholar 

  54. 54

    Li Y, Qian HJ, Lu ZY, Shi AC. Polymer, 2013, 54: 6253–6260

    CAS  Article  Google Scholar 

  55. 55

    Maldovan M, Thomas EL. Periodic Materials and Interference Lithography: for Photonics, Phononics and Mechanics. Weinheim: Wiley-VCH Publishers, 2009. 331

    Google Scholar 

  56. 56

    Lee JH, Koh CY, Singer JP, Jeon SJ, Maldovan M, Stein O, Thomas EL. Adv Mater, 2014, 26: 532–569

    CAS  Article  Google Scholar 

  57. 57

    Maldovan M, Urbas AM, Yufa N, Carter WC, Thomas EL. Phys Rev B, 2002, 65: 165123

    Article  Google Scholar 

  58. 58

    Maldovan M, Carter WC, Thomas EL. Appl Phys Lett, 2003, 83: 5172–5174

    CAS  Article  Google Scholar 

  59. 59

    Kang Y, Walish JJ, Gorishnyy T, Thomas EL. Nat Mater, 2007, 6: 957–960

    CAS  Article  Google Scholar 

  60. 60

    Chan EP, Walish JJ, Urbas AM, Thomas EL. Adv Mater, 2013, 25: 3934–3947

    CAS  Article  Google Scholar 

  61. 61

    Urbas AM, Maldovan M, DeRege P, Thomas EL. Adv Mater, 2002, 14: 1850–1853

    CAS  Article  Google Scholar 

  62. 62

    Chen Y, Yao H, Wang L. J Appl Phys, 2013, 114: 043521–043521

    Article  Google Scholar 

  63. 63

    Chen Y, Wang L. Appl Phys Lett, 2014, 105: 191907

    Article  Google Scholar 

  64. 64

    Park C, Yoon J, Thomas EL. Polymer, 2003, 44: 6725–6760

    CAS  Article  Google Scholar 

  65. 65

    Bates CM, Bates FS. Macromolecules, 2017, 50: 3–22

    CAS  Article  Google Scholar 

  66. 66

    NSF Workshop Report, Bates, FS Chair. Frontiers in Polymer Science and Engineering. Twin Cities: University of Minnesota, 2017

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (de-sc0014457).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Edwin L. Thomas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, E.L. Nanoscale 3D ordered polymer networks. Sci. China Chem. 61, 25–32 (2018). https://doi.org/10.1007/s11426-017-9138-5

Download citation

Keywords

  • self assembly
  • block polymer
  • network morphologies
  • bicontinuous