Skip to main content

Two-dimensional assembly of giant molecules

Abstract

This mini review summarizes recent progress on two-dimensional (2D) self-assembly of giant molecules. Two critical factors with significant impact on the formation of nanostructure are highlighted, i.e., the dimensional constraint of 2D geometry, and the conformational constraint imposed the rigid molecular nanoparticles (MNPs). Diverse 2D nanostructures have been fabricated in condensed state and solution by rational molecular design. The collective secondary interactions between functional groups on the periphery of the MNPs and their persistent shape, together with the dimensional limit, change the free energy landscape and lead to unconventional nanostructures. The unique molecular properties of giant molecules endow these 2D structures with promising technological applications.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Mannix AJ, Kiraly B, Hersam MC, Guisinger NP. Nat Rev Chem, 2017, 1: 0014

    Article  Google Scholar 

  2. 2

    Liu X, Guo Q, Qiu J. Adv Mater, 2017, 29: 1605886

    Article  Google Scholar 

  3. 3

    Li L, Chen Z, Hu Y, Wang X, Zhang T, Chen W, Wang Q. J Am Chem Soc, 2013, 135: 1213–1216

    CAS  Article  Google Scholar 

  4. 4

    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669

    CAS  Article  Google Scholar 

  5. 5

    Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A, Kotov NA. Science, 2007, 318: 80–83

    CAS  Article  Google Scholar 

  6. 6

    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS. Science, 2009, 324: 1312–1314

    CAS  Article  Google Scholar 

  7. 7

    Men L, White MA, Andaraarachchi H, Rosales BA, Vela J. Chem Mater, 2016, 29: 168–175

    Article  Google Scholar 

  8. 8

    Allen MJ, Tung VC, Kaner RB. Chem Rev, 2010, 110: 132–145

    CAS  Article  Google Scholar 

  9. 9

    Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U, Young K, Gaucher A, De S, Smith RJ, Shvets IV, Arora SK, Stanton G, Kim HY, Lee K, Kim GT, Duesberg GS, Hallam T, Boland JJ, Wang JJ, Donegan JF, Grunlan JC, Moriarty G, Shmeliov A, Nicholls RJ, Perkins JM, Grieveson EM, Theuwissen K, McComb DW, Nellist PD, Nicolosi V. Science, 2011, 331: 568–571

    CAS  Article  Google Scholar 

  10. 10

    Tang Z, Zhang Z, Wang Y, Glotzer SC, Kotov NA. Science, 2006, 314: 274–278

    CAS  Article  Google Scholar 

  11. 11

    Schliehe C, Juarez BH, Pelletier M, Jander S, Greshnykh D, Nagel M, Meyer A, Foerster S, Kornowski A, Klinke C, Weller H. Science, 2010, 329: 550–553

    CAS  Article  Google Scholar 

  12. 12

    Yu J, Li J, Zhang W, Chang H. Chem Sci, 2015, 6: 6705–6716

    CAS  Article  Google Scholar 

  13. 13

    Hartgerink JD, Beniash E, Stupp SI. Science, 2001, 294: 1684–1688

    CAS  Article  Google Scholar 

  14. 14

    Hill JP, Jin W, Kosaka A, Fukushima T, Ichihara H, Shimomura T, Ito K, Hashizume T, Ishii N, Aida T. Science, 2004, 304: 1481–1483

    CAS  Article  Google Scholar 

  15. 15

    Zhang L, Eisenberg A. Science, 1995, 268: 1728–1731

    CAS  Article  Google Scholar 

  16. 16

    Li Z, Hillmyer MA, Lodge TP. Nano Lett, 2006, 6: 1245–1249

    CAS  Article  Google Scholar 

  17. 17

    Nam KT, Shelby SA, Choi PH, Marciel AB, Chen R, Tan L, Chu TK, Mesch RA, Lee BC, Connolly MD, Kisielowski C, Zuckermann RN. Nat Mater, 2010, 9: 454–460

    CAS  Article  Google Scholar 

  18. 18

    Bates FS. Science, 1991, 251: 898–905

    CAS  Article  Google Scholar 

  19. 19

    Bates FS, Hillmyer MA, Lodge TP, Bates CM, Delaney KT, Fredrickson GH. Science, 2012, 336: 434–440

    CAS  Article  Google Scholar 

  20. 20

    Bates FS, Fredrickson GH. Annu Rev Phys Chem, 1990, 41: 525–557

    CAS  Article  Google Scholar 

  21. 21

    Matsen MW, Bates FS. Macromolecules, 1996, 29: 1091–1098

    CAS  Article  Google Scholar 

  22. 22

    Dong XH, Hsu CH, Li Y, Liu H, Wang J, Huang M, Yue K, Sun HJ, Wang CL, Yu X, Zhang WB, Lotz B, Cheng SZD. Adv Polym Sci, 2016, 276: 183–213

    Article  Google Scholar 

  23. 23

    Zhang W, Huang M, Su H, Zhang S, Yue K, Dong XH, Li X, Liu H, Zhang S, Wesdemiotis C, Lotz B, Zhang WB, Li Y, Cheng SZD. ACS Cent Sci, 2016, 2: 48–54

    CAS  Article  Google Scholar 

  24. 24

    Yin GZ, Zhang WB, Cheng SZD. Sci China Chem, 2017, 60: 338–352

    CAS  Article  Google Scholar 

  25. 25

    Zhang WB, Yu X, Wang CL, Sun HJ, Hsieh IF, Li Y, Dong XH, Yue K, Van Horn R, Cheng SZD. Macromolecules, 2014, 47: 1221–1239

    CAS  Article  Google Scholar 

  26. 26

    Yu X, Zhong S, Li X, Tu Y, Yang S, Van Horn RM, Ni C, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang WB, Cheng SZD. J Am Chem Soc, 2010, 132: 16741–16744

    CAS  Article  Google Scholar 

  27. 27

    Yu X, Zhang WB, Yue K, Li X, Liu H, Xin Y, Wang CL, Wesdemiotis C, Cheng SZD. J Am Chem Soc, 2012, 134: 7780–7787

    CAS  Article  Google Scholar 

  28. 28

    Yu X, Yue K, Hsieh IF, Li Y, Dong XH, Liu C, Xin Y, Wang HF, Shi AC, Newkome GR, Ho RM, Chen EQ, Zhang WB, Cheng SZD. Proc Natl Acad Sci USA, 2013, 110: 10078–10083

    CAS  Article  Google Scholar 

  29. 29

    Dong XH, Ni B, Huang M, Hsu CH, Chen Z, Lin Z, Zhang WB, Shi AC, Cheng SZD. Macromolecules, 2015, 48: 7172–7179

    CAS  Article  Google Scholar 

  30. 30

    Huang M, Hsu CH, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang WB, Yue K, Cheng SZD. Science, 2015, 348: 424–428

    CAS  Article  Google Scholar 

  31. 31

    Ni B, Huang M, Chen Z, Chen Y, Hsu CH, Li Y, Pochan D, Zhang WB, Cheng SZD, Dong XH. J Am Chem Soc, 2015, 137: 1392–1395

    CAS  Article  Google Scholar 

  32. 32

    Dong XH, Ni B, Huang M, Hsu CH, Bai R, Zhang WB, Shi AC, Cheng SZD. Angew Chem Int Ed, 2016, 55: 2459–2463

    CAS  Article  Google Scholar 

  33. 33

    Hsu CH, Dong XH, Lin Z, Ni B, Lu P, Jiang Z, Tian D, Shi AC, Thomas EL, Cheng SZD. ACS Nano, 2016, 10: 919–929

    CAS  Article  Google Scholar 

  34. 34

    Yue K, Huang M, Marson RL, He J, Huang J, Zhou Z, Wang J, Liu C, Yan X, Wu K, Guo Z, Liu H, Zhang W, Ni P, Wesdemiotis C, Zhang WB, Glotzer SC, Cheng SZD. Proc Natl Acad Sci USA, 2016, 113: 14195–14200

    CAS  Article  Google Scholar 

  35. 35

    Li Y, Zhang WB, Hsieh IF, Zhang G, Cao Y, Li X, Wesdemiotis C, Lotz B, Xiong H, Cheng SZD. J Am Chem Soc, 2011, 133: 10712–10715

    CAS  Article  Google Scholar 

  36. 36

    Liu H, Hsu CH, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang WB, Yue K, Cheng SZD. J Am Chem Soc, 2014, 136: 10691–10699

    CAS  Article  Google Scholar 

  37. 37

    Liu H, Luo J, Shan W, Guo D, Wang J, Hsu CH, Huang M, Zhang W, Lotz B, Zhang WB, Liu T, Yue K, Cheng SZD. ACS Nano, 2016, 10: 6585–6596

    CAS  Article  Google Scholar 

  38. 38

    Yu X, Li Y, Dong XH, Yue K, Lin Z, Feng X, Huang M, Zhang WB, Cheng SZD. J Polym Sci Part B-Polym Phys, 2014, 52: 1309–1325

    CAS  Article  Google Scholar 

  39. 39

    Hudson ZM, Boott CE, Robinson ME, Rupar PA, Winnik MA, Manners I. Nat Chem, 2014, 6: 893–898

    CAS  Article  Google Scholar 

  40. 40

    He X, Hsiao MS, Boott CE, Harniman RL, Nazemi A, Li X, Winnik MA, Manners I. Nat Mater, 2017, 16: 481–488

    CAS  Article  Google Scholar 

  41. 41

    Sanders DP. Chem Rev, 2010, 110: 321–360

    CAS  Article  Google Scholar 

  42. 42

    Pease RF, Chou SY. Proc IEEE, 2008, 96: 248–270

    CAS  Article  Google Scholar 

  43. 43

    Wagner C, Harned N. Nat Photon, 2010, 4: 24–26

    CAS  Article  Google Scholar 

  44. 44

    Hsu CH, Yue K, Wang J, Dong XH, Xia Y, Jiang Z, Thomas EL, Cheng SZD. Macromolecules, 2017, 50: 7282–7290

    CAS  Article  Google Scholar 

  45. 45

    Suzuki Y, Cardone G, Restrepo D, Zavattieri PD, Baker TS, Tezcan FA. Nature, 2016, 533: 369–373

    CAS  Article  Google Scholar 

  46. 46

    Gonen S, DiMaio F, Gonen T, Baker D. Science, 2015, 348: 1365–1368

    CAS  Article  Google Scholar 

  47. 47

    Kovacs AJ, Gonthier A. Kolloid Z Z Polym, 1972, 250: 530–552

    CAS  Article  Google Scholar 

  48. 48

    Kovacs AJ, Gonthier A, Straupe C. J Polym Sci C Polym Symp, 1975, 50: 283–325

    CAS  Article  Google Scholar 

  49. 49

    Cheng SZD, Zhang A, Chen J, Heberer DP. J Polym Sci B Polym Phys, 1991, 29: 287–297

    CAS  Article  Google Scholar 

  50. 50

    Cheng SZD, Zhang A, Barley JS, Chen J, Habenschuss A, Zschack PR. Macromolecules, 1991, 24: 3937–3944

    CAS  Article  Google Scholar 

  51. 51

    Dong XH, Van Horn R, Chen Z, Ni B, Yu X, Wurm A, Schick C, Lotz B, Zhang WB, Cheng SZD. J Phys Chem Lett, 2013, 4: 2356–2360

    CAS  Article  Google Scholar 

  52. 52

    Tang J, Ma C, Li XY, Ren LJ, Wu H, Zheng P, Wang W. Macromolecules, 2015, 48: 2723–2730

    CAS  Article  Google Scholar 

  53. 53

    Yu CB, Ren LJ, Wang W. Macromolecules, 2017, 50: 3273–3284

    CAS  Article  Google Scholar 

  54. 54

    Ma C, Wu H, Huang ZH, Guo RH, Hu MB, Kübel C, Yan LT, Wang W. Angew Chem, 2015, 127: 15925–15930

    Article  Google Scholar 

  55. 55

    Hu MB, Hou ZY, Hao WQ, Xiao Y, Yu W, Ma C, Ren LJ, Zheng P, Wang W. Langmuir, 2013, 29: 5714–5722

    CAS  Article  Google Scholar 

  56. 56

    Sun HJ, Tu Y, Wang CL, Van Horn RM, Tsai CC, Graham MJ, Sun B, Lotz B, Zhang WB, Cheng SZD. J Mater Chem, 2011, 21: 14240–14247

    CAS  Article  Google Scholar 

  57. 57

    Lin MC, Hsu CH, Sun HJ, Wang CL, Zhang WB, Li Y, Chen HL, Cheng SZD. Polymer, 2014, 55: 4514–4520

    CAS  Article  Google Scholar 

  58. 58

    Antonietti M, Förster S. Adv Mater, 2003, 15: 1323–1333

    CAS  Article  Google Scholar 

  59. 59

    May S. Eur Phys J E, 2000, 3: 37–44

    CAS  Article  Google Scholar 

  60. 60

    Lin Z, Sun J, Zhou Y, Wang Y, Xu H, Yang X, Su H, Cui H, Aida T, Zhang W, Cheng SZD. J Am Chem Soc, 2017, 139: 5883–5889

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Program for Guangdong Introducing Innovative and Enterpreneurial Teams (2016ZT06C322), the Fundamental Research Funds for the Central University (2017JQ006), and the National Natural Science Foundation of China (51773066). X.H. Dong thanks the support from the South China University of Technology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xue-Hui Dong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Kong, D. & Dong, XH. Two-dimensional assembly of giant molecules. Sci. China Chem. 61, 17–24 (2018). https://doi.org/10.1007/s11426-017-9136-x

Download citation

Keywords

  • two-dimensional assembly
  • giant molecules
  • packing constraint