Skip to main content
Log in

Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Highly conductive and dispersible Al-doped ZnO (AZO) nanoparticles (NPs) have been successfully prepared by ligand-free colloidal synthesis at low temperature and stabilization by surfactant-aid including ethanolamine (EA), ethylenediamine (EDA), diethylenetriamine (DETA) and triethylenetetramine (TETA). Due to the strong intermolecular hydrogen-bonding interactions between AZO NPs and the amino groups from surfactants, the inevitable aggregation was suppressed and the surface defect sites were passivated obviously. The existence of electron transfer from the nitrogen of the amino groups to the zinc of AZO, led to a dramatic increase in electrical conductivity. A homogeneous current intensity value up to ∼2200 pA for AZO tread by DETA was characterized by conductive atomic force microscopy (C-AFM), which was more superior than that of the reported sol-gel synthesized AZO with the assistance of EA surfactant (refer to 170.7 pA). Furthermore, non-fullerenes solar cells based on PBDB-T:ITIC with AZO-DETA (80 nm) yielded a best device efficiency of 10.7% and kept up prominent PCE exceeding 10% even with more thicker interlayer (95 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    Article  CAS  Google Scholar 

  2. Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD. J Am Chem Soc, 2014, 136: 9608–9618

    Article  CAS  Google Scholar 

  3. Heeger AJ. Adv Mater, 2014, 26: 10–28

    Article  CAS  Google Scholar 

  4. Dou L, You J, Yang J, Chen CC, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Nat Photon, 2012, 6: 180–185

    Article  CAS  Google Scholar 

  5. Lee BR, Jung ED, Nam YS, Jung M, Park JS, Lee S, Choi H, Ko SJ, Shin NR, Kim YK, Kim SO, Kim JY, Shin HJ, Cho S, Song MH. Adv Mater, 2014, 26: 494–500

    Article  CAS  Google Scholar 

  6. Mao L, Chen Q, Li Y, Li Y, Cai J, Su W, Bai S, Jin Y, Ma CQ, Cui Z, Chen L. Nano Energy, 2014, 10: 259–267

    Article  CAS  Google Scholar 

  7. Xu G, Shen L, Cui C, Wen S, Xue R, Chen W, Chen H, Zhang J, Li H, Li Y, Li Y. Adv Funct Mater, 2017, 27: 1605908

    Article  Google Scholar 

  8. Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015, 27: 1035–1041

    Article  CAS  Google Scholar 

  9. He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174–179

    Article  CAS  Google Scholar 

  10. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293

    Article  CAS  Google Scholar 

  11. Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574–1582

    Article  CAS  Google Scholar 

  12. Po R, Carbonera C, Bernardi A, Camaioni N. Energy Environ Sci, 2011, 4: 285–310

    Article  CAS  Google Scholar 

  13. Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582

    Article  CAS  Google Scholar 

  14. Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang XF, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28: 9811–9818

    Article  CAS  Google Scholar 

  15. Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004–2013

    Article  CAS  Google Scholar 

  16. Hu Z, Xu R, Dong S, Lin K, Liu J, Huang F, Cao Y. Mater Horiz, 2017, 4: 88–97

    Article  CAS  Google Scholar 

  17. Gaceur M, Dkhil SB, Duché D, Bencheikh F, Simon JJ, Escoubas L, Mansour M, Guerrero A, Garcia-Belmonte G, Liu X, Fahlman M, Dachraoui W, Diallo AK, Videlot-Ackermann C, Margeat O, Ackermann J. Adv Funct Mater, 2016, 26: 243–253

    Article  CAS  Google Scholar 

  18. Fu H, Li B, Meng X, Tan L, Shen X, Chen Y. Org Electron, 2015, 26: 487–494

    Article  CAS  Google Scholar 

  19. Hu T, Li F, Yuan K, Chen Y. ACS Appl Mater Interf, 2013, 5: 5763–5770

    Article  CAS  Google Scholar 

  20. Mahamuni S, Bendre BS, Leppert VJ, Smith CA, Cooke D, Risbud SH, Lee HWH. Nanostruct Mater, 1996, 7: 659–666

    Article  CAS  Google Scholar 

  21. Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL. Appl Phys Lett, 2000, 76: 2901–2903

    Article  CAS  Google Scholar 

  22. Ravirajan P, Peiró AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J. J Phys Chem B, 2006, 110: 7635–7639

    Article  CAS  Google Scholar 

  23. Greene LE, Law M, Yuhas BD, Yang P. J Phys Chem C, 2007, 111: 18451–18456

    Article  CAS  Google Scholar 

  24. Yin Z, Zheng Q, Chen SC, Cai D, Zhou L, Zhang J. Adv Energy Mater, 2014, 4: 1301404

    Article  Google Scholar 

  25. Jagadamma LK, Al-Senani M, El-Labban A, Gereige I, Ngongang Ndjawa GO, Faria JCD, Kim T, Zhao K, Cruciani F, Anjum DH, McLachlan MA, Beaujuge PM, Amassian A. Adv Energy Mater, 2015, 5: 1500204

    Article  Google Scholar 

  26. Wang J, Yan C, Zhang X, Zhao X, Fu Y, Zhang B, Xie Z. J Mater Chem C, 2016, 4: 10820–10826

    Article  CAS  Google Scholar 

  27. Liao SH, Jhuo HJ, Yeh PN, Cheng YS, Li YL, Lee YH, Sharma S, Chen SA. Sci Rep, 2014, 4: 6813

    Article  CAS  Google Scholar 

  28. Song JZ, Kulinich SA, Li JH, Liu YL, Zeng HB. Angew Chem Int Ed, 2015, 127: 472–476

    Article  Google Scholar 

  29. Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang HQ, Fang J. Adv Mater, 2016, 28: 7405–7412

    Article  CAS  Google Scholar 

  30. Della Gaspera E, Bersani M, Cittadini M, Guglielmi M, Pagani D, Noriega R, Mehra S, Salleo A, Martucci A. J Am Chem Soc, 2013, 135: 3439–3448

    Article  Google Scholar 

  31. Yan Y, Cai F, Yang L, Li J, Zhang Y, Qin F, Xiong C, Zhou Y, Lidzey DG, Wang T. Adv Mater, 2017, 29: 1604044

    Article  Google Scholar 

  32. Nian L, Chen Z, Herbst S, Li Q, Yu C, Jiang X, Dong H, Li F, Liu L, Würthner F, Chen J, Xie Z, Ma Y. Adv Mater, 2016, 28: 7521–7526

    Article  CAS  Google Scholar 

  33. Beek WJE, Wienk MM, Kemerink M, Yang X, Janssen RAJ. J Phys Chem B, 2005, 109: 9505–9516

    Article  CAS  Google Scholar 

  34. Lee BR, Lee S, Park JH, Jung ED, Yu JC, Nam YS, Heo J, Kim JY, Kim BS, Song MH. Adv Mater, 2015, 27: 3553–3559

    Article  CAS  Google Scholar 

  35. Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W. Adv Funct Mater, 2010, 20: 561–572

    Article  CAS  Google Scholar 

  36. Chen S, Small CE, Amb CM, Subbiah J, Lai T, Tsang SW, Manders JR, Reynolds JR, So F. Adv Energy Mater, 2012, 2: 1333–1337

    Article  CAS  Google Scholar 

  37. Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M. Adv Funct Mater, 2005, 15: 1945–1954

    Article  CAS  Google Scholar 

  38. Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U, Gao F, Zhang F. Adv Energy Mater, 2015, 5: 1401606

    Article  Google Scholar 

  39. Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M. J Phys Chem C, 2013, 117: 5626–5637

    Article  CAS  Google Scholar 

  40. Gao D, Zhang J, Yang G, Zhang J, Shi Z, Qi J, Zhang Z, Xue D. J Phys Chem C, 2010, 114: 13477–13481

    Article  CAS  Google Scholar 

  41. Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y. J Am Chem Soc, 2015, 137: 6995–6998

    Article  CAS  Google Scholar 

  42. Seo JH, Yang R, Brzezinski JZ, Walker B, Bazan GC, Nguyen TQ. Adv Mater, 2009, 21: 1006–1011

    Article  CAS  Google Scholar 

  43. Braun S, Salaneck WR, Fahlman M. Adv Mater, 2009, 21: 1450–1472

    Article  CAS  Google Scholar 

  44. Yang T, Wang M, Duan C, Hu X, Huang L, Peng J, Huang F, Gong X. Energy Environ Sci, 2012, 5: 8208–8214

    Article  CAS  Google Scholar 

  45. Park HY, Lim D, Kim KD, Jang SY. J Mater Chem A, 2013, 1: 6327–6334

    Article  CAS  Google Scholar 

  46. Hu L, Wu F, Li C, Hu A, Hu X, Zhang Y, Chen L, Chen Y. Macromolecules, 2015, 48: 5578–5586

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51603099, 51672121) and the National Science Fund for Distinguished Young Scholars (51425304).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Licheng Tan or Yiwang Chen.

Electronic supplementary material

11426_2017_9131_MOESM1_ESM.doc

Highly Stable Al-Doped ZnO by Ligand-Free Synthesis as General Thickness-insensitive Interlayers for Organic Solar Cells

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, Z., Xiao, S. et al. Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells. Sci. China Chem. 61, 127–134 (2018). https://doi.org/10.1007/s11426-017-9131-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9131-0

Keywords

Navigation