Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells

Abstract

Highly conductive and dispersible Al-doped ZnO (AZO) nanoparticles (NPs) have been successfully prepared by ligand-free colloidal synthesis at low temperature and stabilization by surfactant-aid including ethanolamine (EA), ethylenediamine (EDA), diethylenetriamine (DETA) and triethylenetetramine (TETA). Due to the strong intermolecular hydrogen-bonding interactions between AZO NPs and the amino groups from surfactants, the inevitable aggregation was suppressed and the surface defect sites were passivated obviously. The existence of electron transfer from the nitrogen of the amino groups to the zinc of AZO, led to a dramatic increase in electrical conductivity. A homogeneous current intensity value up to ∼2200 pA for AZO tread by DETA was characterized by conductive atomic force microscopy (C-AFM), which was more superior than that of the reported sol-gel synthesized AZO with the assistance of EA surfactant (refer to 170.7 pA). Furthermore, non-fullerenes solar cells based on PBDB-T:ITIC with AZO-DETA (80 nm) yielded a best device efficiency of 10.7% and kept up prominent PCE exceeding 10% even with more thicker interlayer (95 nm).

This is a preview of subscription content, log in to check access.

References

  1. 1

    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791

    CAS  Article  Google Scholar 

  2. 2

    Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD. J Am Chem Soc, 2014, 136: 9608–9618

    CAS  Article  Google Scholar 

  3. 3

    Heeger AJ. Adv Mater, 2014, 26: 10–28

    CAS  Article  Google Scholar 

  4. 4

    Dou L, You J, Yang J, Chen CC, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Nat Photon, 2012, 6: 180–185

    CAS  Article  Google Scholar 

  5. 5

    Lee BR, Jung ED, Nam YS, Jung M, Park JS, Lee S, Choi H, Ko SJ, Shin NR, Kim YK, Kim SO, Kim JY, Shin HJ, Cho S, Song MH. Adv Mater, 2014, 26: 494–500

    CAS  Article  Google Scholar 

  6. 6

    Mao L, Chen Q, Li Y, Li Y, Cai J, Su W, Bai S, Jin Y, Ma CQ, Cui Z, Chen L. Nano Energy, 2014, 10: 259–267

    CAS  Article  Google Scholar 

  7. 7

    Xu G, Shen L, Cui C, Wen S, Xue R, Chen W, Chen H, Zhang J, Li H, Li Y, Li Y. Adv Funct Mater, 2017, 27: 1605908

    Article  Google Scholar 

  8. 8

    Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015, 27: 1035–1041

    CAS  Article  Google Scholar 

  9. 9

    He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174–179

    CAS  Article  Google Scholar 

  10. 10

    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293

    CAS  Article  Google Scholar 

  11. 11

    Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574–1582

    CAS  Article  Google Scholar 

  12. 12

    Po R, Carbonera C, Bernardi A, Camaioni N. Energy Environ Sci, 2011, 4: 285–310

    CAS  Article  Google Scholar 

  13. 13

    Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582

    CAS  Article  Google Scholar 

  14. 14

    Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang XF, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28: 9811–9818

    CAS  Article  Google Scholar 

  15. 15

    Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004–2013

    CAS  Article  Google Scholar 

  16. 16

    Hu Z, Xu R, Dong S, Lin K, Liu J, Huang F, Cao Y. Mater Horiz, 2017, 4: 88–97

    CAS  Article  Google Scholar 

  17. 17

    Gaceur M, Dkhil SB, Duché D, Bencheikh F, Simon JJ, Escoubas L, Mansour M, Guerrero A, Garcia-Belmonte G, Liu X, Fahlman M, Dachraoui W, Diallo AK, Videlot-Ackermann C, Margeat O, Ackermann J. Adv Funct Mater, 2016, 26: 243–253

    CAS  Article  Google Scholar 

  18. 18

    Fu H, Li B, Meng X, Tan L, Shen X, Chen Y. Org Electron, 2015, 26: 487–494

    CAS  Article  Google Scholar 

  19. 19

    Hu T, Li F, Yuan K, Chen Y. ACS Appl Mater Interf, 2013, 5: 5763–5770

    CAS  Article  Google Scholar 

  20. 20

    Mahamuni S, Bendre BS, Leppert VJ, Smith CA, Cooke D, Risbud SH, Lee HWH. Nanostruct Mater, 1996, 7: 659–666

    CAS  Article  Google Scholar 

  21. 21

    Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL. Appl Phys Lett, 2000, 76: 2901–2903

    CAS  Article  Google Scholar 

  22. 22

    Ravirajan P, Peiró AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J. J Phys Chem B, 2006, 110: 7635–7639

    CAS  Article  Google Scholar 

  23. 23

    Greene LE, Law M, Yuhas BD, Yang P. J Phys Chem C, 2007, 111: 18451–18456

    CAS  Article  Google Scholar 

  24. 24

    Yin Z, Zheng Q, Chen SC, Cai D, Zhou L, Zhang J. Adv Energy Mater, 2014, 4: 1301404

    Article  Google Scholar 

  25. 25

    Jagadamma LK, Al-Senani M, El-Labban A, Gereige I, Ngongang Ndjawa GO, Faria JCD, Kim T, Zhao K, Cruciani F, Anjum DH, McLachlan MA, Beaujuge PM, Amassian A. Adv Energy Mater, 2015, 5: 1500204

    Article  Google Scholar 

  26. 26

    Wang J, Yan C, Zhang X, Zhao X, Fu Y, Zhang B, Xie Z. J Mater Chem C, 2016, 4: 10820–10826

    CAS  Article  Google Scholar 

  27. 27

    Liao SH, Jhuo HJ, Yeh PN, Cheng YS, Li YL, Lee YH, Sharma S, Chen SA. Sci Rep, 2014, 4: 6813

    CAS  Article  Google Scholar 

  28. 28

    Song JZ, Kulinich SA, Li JH, Liu YL, Zeng HB. Angew Chem Int Ed, 2015, 127: 472–476

    Article  Google Scholar 

  29. 29

    Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang HQ, Fang J. Adv Mater, 2016, 28: 7405–7412

    CAS  Article  Google Scholar 

  30. 30

    Della Gaspera E, Bersani M, Cittadini M, Guglielmi M, Pagani D, Noriega R, Mehra S, Salleo A, Martucci A. J Am Chem Soc, 2013, 135: 3439–3448

    Article  Google Scholar 

  31. 31

    Yan Y, Cai F, Yang L, Li J, Zhang Y, Qin F, Xiong C, Zhou Y, Lidzey DG, Wang T. Adv Mater, 2017, 29: 1604044

    Article  Google Scholar 

  32. 32

    Nian L, Chen Z, Herbst S, Li Q, Yu C, Jiang X, Dong H, Li F, Liu L, Würthner F, Chen J, Xie Z, Ma Y. Adv Mater, 2016, 28: 7521–7526

    CAS  Article  Google Scholar 

  33. 33

    Beek WJE, Wienk MM, Kemerink M, Yang X, Janssen RAJ. J Phys Chem B, 2005, 109: 9505–9516

    CAS  Article  Google Scholar 

  34. 34

    Lee BR, Lee S, Park JH, Jung ED, Yu JC, Nam YS, Heo J, Kim JY, Kim BS, Song MH. Adv Mater, 2015, 27: 3553–3559

    CAS  Article  Google Scholar 

  35. 35

    Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W. Adv Funct Mater, 2010, 20: 561–572

    CAS  Article  Google Scholar 

  36. 36

    Chen S, Small CE, Amb CM, Subbiah J, Lai T, Tsang SW, Manders JR, Reynolds JR, So F. Adv Energy Mater, 2012, 2: 1333–1337

    CAS  Article  Google Scholar 

  37. 37

    Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M. Adv Funct Mater, 2005, 15: 1945–1954

    CAS  Article  Google Scholar 

  38. 38

    Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U, Gao F, Zhang F. Adv Energy Mater, 2015, 5: 1401606

    Article  Google Scholar 

  39. 39

    Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M. J Phys Chem C, 2013, 117: 5626–5637

    CAS  Article  Google Scholar 

  40. 40

    Gao D, Zhang J, Yang G, Zhang J, Shi Z, Qi J, Zhang Z, Xue D. J Phys Chem C, 2010, 114: 13477–13481

    CAS  Article  Google Scholar 

  41. 41

    Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y. J Am Chem Soc, 2015, 137: 6995–6998

    CAS  Article  Google Scholar 

  42. 42

    Seo JH, Yang R, Brzezinski JZ, Walker B, Bazan GC, Nguyen TQ. Adv Mater, 2009, 21: 1006–1011

    CAS  Article  Google Scholar 

  43. 43

    Braun S, Salaneck WR, Fahlman M. Adv Mater, 2009, 21: 1450–1472

    CAS  Article  Google Scholar 

  44. 44

    Yang T, Wang M, Duan C, Hu X, Huang L, Peng J, Huang F, Gong X. Energy Environ Sci, 2012, 5: 8208–8214

    CAS  Article  Google Scholar 

  45. 45

    Park HY, Lim D, Kim KD, Jang SY. J Mater Chem A, 2013, 1: 6327–6334

    CAS  Article  Google Scholar 

  46. 46

    Hu L, Wu F, Li C, Hu A, Hu X, Zhang Y, Chen L, Chen Y. Macromolecules, 2015, 48: 5578–5586

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51603099, 51672121) and the National Science Fund for Distinguished Young Scholars (51425304).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Licheng Tan or Yiwang Chen.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Peng, Z., Xiao, S. et al. Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells. Sci. China Chem. 61, 127–134 (2018). https://doi.org/10.1007/s11426-017-9131-0

Download citation

Keywords

  • aluminum-doped zinc oxide
  • organic solar cells
  • conductivity
  • dispersibility
  • nanoparticles