Science China Chemistry

, Volume 61, Issue 1, pp 127–134 | Cite as

Highly stable Al-doped ZnO by ligand-free synthesis as general thickness-insensitive interlayers for organic solar cells

  • Yilin Wang
  • Zhongyou Peng
  • Shuqin Xiao
  • Jia Yang
  • Huanyu Zhou
  • Liqiang Huang
  • Lulu Sun
  • Yinhua Zhou
  • Licheng TanEmail author
  • Yiwang ChenEmail author


Highly conductive and dispersible Al-doped ZnO (AZO) nanoparticles (NPs) have been successfully prepared by ligand-free colloidal synthesis at low temperature and stabilization by surfactant-aid including ethanolamine (EA), ethylenediamine (EDA), diethylenetriamine (DETA) and triethylenetetramine (TETA). Due to the strong intermolecular hydrogen-bonding interactions between AZO NPs and the amino groups from surfactants, the inevitable aggregation was suppressed and the surface defect sites were passivated obviously. The existence of electron transfer from the nitrogen of the amino groups to the zinc of AZO, led to a dramatic increase in electrical conductivity. A homogeneous current intensity value up to ∼2200 pA for AZO tread by DETA was characterized by conductive atomic force microscopy (C-AFM), which was more superior than that of the reported sol-gel synthesized AZO with the assistance of EA surfactant (refer to 170.7 pA). Furthermore, non-fullerenes solar cells based on PBDB-T:ITIC with AZO-DETA (80 nm) yielded a best device efficiency of 10.7% and kept up prominent PCE exceeding 10% even with more thicker interlayer (95 nm).


aluminum-doped zinc oxide organic solar cells conductivity dispersibility nanoparticles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51603099, 51672121) and the National Science Fund for Distinguished Young Scholars (51425304).

Supplementary material

11426_2017_9131_MOESM1_ESM.doc (23.9 mb)
Highly Stable Al-Doped ZnO by Ligand-Free Synthesis as General Thickness-insensitive Interlayers for Organic Solar Cells


  1. 1.
    Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ. Science, 1995, 270: 1789–1791CrossRefGoogle Scholar
  2. 2.
    Graham KR, Cabanetos C, Jahnke JP, Idso MN, El Labban A, Ngongang Ndjawa GO, Heumueller T, Vandewal K, Salleo A, Chmelka BF, Amassian A, Beaujuge PM, McGehee MD. J Am Chem Soc, 2014, 136: 9608–9618CrossRefGoogle Scholar
  3. 3.
    Heeger AJ. Adv Mater, 2014, 26: 10–28CrossRefGoogle Scholar
  4. 4.
    Dou L, You J, Yang J, Chen CC, He Y, Murase S, Moriarty T, Emery K, Li G, Yang Y. Nat Photon, 2012, 6: 180–185CrossRefGoogle Scholar
  5. 5.
    Lee BR, Jung ED, Nam YS, Jung M, Park JS, Lee S, Choi H, Ko SJ, Shin NR, Kim YK, Kim SO, Kim JY, Shin HJ, Cho S, Song MH. Adv Mater, 2014, 26: 494–500CrossRefGoogle Scholar
  6. 6.
    Mao L, Chen Q, Li Y, Li Y, Cai J, Su W, Bai S, Jin Y, Ma CQ, Cui Z, Chen L. Nano Energy, 2014, 10: 259–267CrossRefGoogle Scholar
  7. 7.
    Xu G, Shen L, Cui C, Wen S, Xue R, Chen W, Chen H, Zhang J, Li H, Li Y, Li Y. Adv Funct Mater, 2017, 27: 1605908CrossRefGoogle Scholar
  8. 8.
    Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015, 27: 1035–1041CrossRefGoogle Scholar
  9. 9.
    He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y. Nat Photon, 2015, 9: 174–179CrossRefGoogle Scholar
  10. 10.
    Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293CrossRefGoogle Scholar
  11. 11.
    Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574–1582CrossRefGoogle Scholar
  12. 12.
    Po R, Carbonera C, Bernardi A, Camaioni N. Energy Environ Sci, 2011, 4: 285–310CrossRefGoogle Scholar
  13. 13.
    Hu Z, Ying L, Huang F, Cao Y. Sci China Chem, 2017, 60: 571–582CrossRefGoogle Scholar
  14. 14.
    Jin Y, Chen Z, Dong S, Zheng N, Ying L, Jiang XF, Liu F, Huang F, Cao Y. Adv Mater, 2016, 28: 9811–9818CrossRefGoogle Scholar
  15. 15.
    Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004–2013CrossRefGoogle Scholar
  16. 16.
    Hu Z, Xu R, Dong S, Lin K, Liu J, Huang F, Cao Y. Mater Horiz, 2017, 4: 88–97CrossRefGoogle Scholar
  17. 17.
    Gaceur M, Dkhil SB, Duché D, Bencheikh F, Simon JJ, Escoubas L, Mansour M, Guerrero A, Garcia-Belmonte G, Liu X, Fahlman M, Dachraoui W, Diallo AK, Videlot-Ackermann C, Margeat O, Ackermann J. Adv Funct Mater, 2016, 26: 243–253CrossRefGoogle Scholar
  18. 18.
    Fu H, Li B, Meng X, Tan L, Shen X, Chen Y. Org Electron, 2015, 26: 487–494CrossRefGoogle Scholar
  19. 19.
    Hu T, Li F, Yuan K, Chen Y. ACS Appl Mater Interf, 2013, 5: 5763–5770CrossRefGoogle Scholar
  20. 20.
    Mahamuni S, Bendre BS, Leppert VJ, Smith CA, Cooke D, Risbud SH, Lee HWH. Nanostruct Mater, 1996, 7: 659–666CrossRefGoogle Scholar
  21. 21.
    Guo L, Yang S, Yang C, Yu P, Wang J, Ge W, Wong GKL. Appl Phys Lett, 2000, 76: 2901–2903CrossRefGoogle Scholar
  22. 22.
    Ravirajan P, Peiró AM, Nazeeruddin MK, Graetzel M, Bradley DDC, Durrant JR, Nelson J. J Phys Chem B, 2006, 110: 7635–7639CrossRefGoogle Scholar
  23. 23.
    Greene LE, Law M, Yuhas BD, Yang P. J Phys Chem C, 2007, 111: 18451–18456CrossRefGoogle Scholar
  24. 24.
    Yin Z, Zheng Q, Chen SC, Cai D, Zhou L, Zhang J. Adv Energy Mater, 2014, 4: 1301404CrossRefGoogle Scholar
  25. 25.
    Jagadamma LK, Al-Senani M, El-Labban A, Gereige I, Ngongang Ndjawa GO, Faria JCD, Kim T, Zhao K, Cruciani F, Anjum DH, McLachlan MA, Beaujuge PM, Amassian A. Adv Energy Mater, 2015, 5: 1500204CrossRefGoogle Scholar
  26. 26.
    Wang J, Yan C, Zhang X, Zhao X, Fu Y, Zhang B, Xie Z. J Mater Chem C, 2016, 4: 10820–10826CrossRefGoogle Scholar
  27. 27.
    Liao SH, Jhuo HJ, Yeh PN, Cheng YS, Li YL, Lee YH, Sharma S, Chen SA. Sci Rep, 2014, 4: 6813CrossRefGoogle Scholar
  28. 28.
    Song JZ, Kulinich SA, Li JH, Liu YL, Zeng HB. Angew Chem Int Ed, 2015, 127: 472–476CrossRefGoogle Scholar
  29. 29.
    Liu X, Li X, Li Y, Song C, Zhu L, Zhang W, Wang HQ, Fang J. Adv Mater, 2016, 28: 7405–7412CrossRefGoogle Scholar
  30. 30.
    Della Gaspera E, Bersani M, Cittadini M, Guglielmi M, Pagani D, Noriega R, Mehra S, Salleo A, Martucci A. J Am Chem Soc, 2013, 135: 3439–3448CrossRefGoogle Scholar
  31. 31.
    Yan Y, Cai F, Yang L, Li J, Zhang Y, Qin F, Xiong C, Zhou Y, Lidzey DG, Wang T. Adv Mater, 2017, 29: 1604044CrossRefGoogle Scholar
  32. 32.
    Nian L, Chen Z, Herbst S, Li Q, Yu C, Jiang X, Dong H, Li F, Liu L, Würthner F, Chen J, Xie Z, Ma Y. Adv Mater, 2016, 28: 7521–7526CrossRefGoogle Scholar
  33. 33.
    Beek WJE, Wienk MM, Kemerink M, Yang X, Janssen RAJ. J Phys Chem B, 2005, 109: 9505–9516CrossRefGoogle Scholar
  34. 34.
    Lee BR, Lee S, Park JH, Jung ED, Yu JC, Nam YS, Heo J, Kim JY, Kim BS, Song MH. Adv Mater, 2015, 27: 3553–3559CrossRefGoogle Scholar
  35. 35.
    Zeng H, Duan G, Li Y, Yang S, Xu X, Cai W. Adv Funct Mater, 2010, 20: 561–572CrossRefGoogle Scholar
  36. 36.
    Chen S, Small CE, Amb CM, Subbiah J, Lai T, Tsang SW, Manders JR, Reynolds JR, So F. Adv Energy Mater, 2012, 2: 1333–1337CrossRefGoogle Scholar
  37. 37.
    Ischenko V, Polarz S, Grote D, Stavarache V, Fink K, Driess M. Adv Funct Mater, 2005, 15: 1945–1954CrossRefGoogle Scholar
  38. 38.
    Bai S, Jin Y, Liang X, Ye Z, Wu Z, Sun B, Ma Z, Tang Z, Wang J, Würfel U, Gao F, Zhang F. Adv Energy Mater, 2015, 5: 1401606CrossRefGoogle Scholar
  39. 39.
    Cui Q, Liu C, Wu F, Yue W, Qiu Z, Zhang H, Gao F, Shen W, Wang M. J Phys Chem C, 2013, 117: 5626–5637CrossRefGoogle Scholar
  40. 40.
    Gao D, Zhang J, Yang G, Zhang J, Shi Z, Qi J, Zhang Z, Xue D. J Phys Chem C, 2010, 114: 13477–13481CrossRefGoogle Scholar
  41. 41.
    Nian L, Zhang W, Zhu N, Liu L, Xie Z, Wu H, Würthner F, Ma Y. J Am Chem Soc, 2015, 137: 6995–6998CrossRefGoogle Scholar
  42. 42.
    Seo JH, Yang R, Brzezinski JZ, Walker B, Bazan GC, Nguyen TQ. Adv Mater, 2009, 21: 1006–1011CrossRefGoogle Scholar
  43. 43.
    Braun S, Salaneck WR, Fahlman M. Adv Mater, 2009, 21: 1450–1472CrossRefGoogle Scholar
  44. 44.
    Yang T, Wang M, Duan C, Hu X, Huang L, Peng J, Huang F, Gong X. Energy Environ Sci, 2012, 5: 8208–8214CrossRefGoogle Scholar
  45. 45.
    Park HY, Lim D, Kim KD, Jang SY. J Mater Chem A, 2013, 1: 6327–6334CrossRefGoogle Scholar
  46. 46.
    Hu L, Wu F, Li C, Hu A, Hu X, Zhang Y, Chen L, Chen Y. Macromolecules, 2015, 48: 5578–5586CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Yilin Wang
    • 1
  • Zhongyou Peng
    • 1
  • Shuqin Xiao
    • 1
    • 2
  • Jia Yang
    • 1
  • Huanyu Zhou
    • 1
  • Liqiang Huang
    • 1
  • Lulu Sun
    • 3
  • Yinhua Zhou
    • 3
  • Licheng Tan
    • 1
    • 2
    Email author
  • Yiwang Chen
    • 1
    • 2
    Email author
  1. 1.College of ChemistryNanchang UniversityNanchangChina
  2. 2.Jiangxi Provincial Key Laboratory of New Energy Chemistry, Institute of PolymersNanchang UniversityNanchangChina
  3. 3.Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations