Science China Chemistry

, Volume 60, Issue 8, pp 1007–1014 | Cite as

Engineering porous organic polymers for carbon dioxide capture

  • Ning Huang
  • Gregory Day
  • Xinyu Yang
  • Hannah Drake
  • Hong-Cai ZhouEmail author
Mini Reviews


As atmospheric CO2 levels rise, the development of physical or chemical adsorbents for CO2 capture and separation is of great importance on the way towards a sustainable low-carbon future. Porous organic polymers are promising candidates for CO2 capture materials owing to their structural flexibility, high surface area, and high stability. In this review, we highlight high-performance porous organic polymers for CO2 capture and summarize the strategies to enhance CO2 uptake and selectivity, such as increasing surface area, increasing interaction between porous organic polymers and CO2, and pore surface functionalization.


porous organic polymers CO2 capture nanomaterials post-synthesis polymer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stolaroff JK, Keith DW, Lowry GV. Environ Sci Technol, 2008, 42: 2728–2735CrossRefGoogle Scholar
  2. 2.
    Nikulshina V, Gebald C, Steinfeld A. Chem Eng J, 2009, 146: 244–248CrossRefGoogle Scholar
  3. 3.
    Goeppert A, Czaun M, Surya Prakash GK, Olah GA. Energy Environ Sci, 2012, 5: 7833–7853CrossRefGoogle Scholar
  4. 4.
    Zhou HC, Long JR, Yaghi OM. Chem Rev, 2012, 112: 673–674CrossRefGoogle Scholar
  5. 5.
    Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR. Chem Rev, 2012, 112: 724–781CrossRefGoogle Scholar
  6. 6.
    Rashidi NA, Yusup S. J CO 2 Util, 2016, 13: 1–16CrossRefGoogle Scholar
  7. 7.
    Gadipelli S, Patel HA, Guo Z. Adv Mater, 2015, 27: 4903–4909CrossRefGoogle Scholar
  8. 8.
    Chen C, Yang ST, Ahn WS, Ryoo R. Chem Commun, 2009, 2: 3627CrossRefGoogle Scholar
  9. 9.
    Kim HR, Yoon TU, Kim SI, An J, Bae YS, Lee CY. RSC Adv, 2017, 7: 1266–1270CrossRefGoogle Scholar
  10. 10.
    Bates ED, Mayton RD, Ntai I, Davis JH. J Am Chem Soc, 2002, 124: 926–927CrossRefGoogle Scholar
  11. 11.
    Lu W, Sculley JP, Yuan D, Krishna R, Wei Z, Zhou HC. Angew Chem Int Ed, 2012, 51: 7480–7484CrossRefGoogle Scholar
  12. 12.
    Cooper AI. Adv Mater, 2009, 21: 1291–1295CrossRefGoogle Scholar
  13. 13.
    Xu Y, Jin S, Xu H, Nagai A, Jiang D. Chem Soc Rev, 2013, 42: 8012–8031CrossRefGoogle Scholar
  14. 14.
    Carvalho PJ, Kurnia KA, Coutinho JAP. Phys Chem Chem Phys, 2016, 18: 14757–14771CrossRefGoogle Scholar
  15. 15.
    McKeown NB, Budd PM. Chem Soc Rev, 2006, 35: 675–683CrossRefGoogle Scholar
  16. 16.
    Jeon HJ, Choi JH, Lee Y, Choi KM, Park JH, Kang JK. Adv Energy Mater, 2012, 2: 225–228CrossRefGoogle Scholar
  17. 17.
    Farha OK, Spokoyny AM, Hauser BG, Bae YS, Brown SE, Snurr RQ, Mirkin CA, Hupp JT. Chem Mater, 2009, 21: 3033–3035CrossRefGoogle Scholar
  18. 18.
    Zhang H, Zhang C, Wang X, Qiu Z, Liang X, Chen B, Xu J, Jiang JX, Li Y, Li H, Wang F. RSC Adv, 2016, 6: 113826–113833CrossRefGoogle Scholar
  19. 19.
    Wang J, Wei Yang JG, Yi G, Zhang Y. Chem Commun, 2015, 51: 15708–15711CrossRefGoogle Scholar
  20. 20.
    Buyukcakir O, Je SH, Talapaneni SN, Kim D, Coskun A. ACS Appl Mater Interfaces, 2017, 9: 7209–7216CrossRefGoogle Scholar
  21. 21.
    Yuan D, Lu W, Zhao D, Zhou HC. Adv Mater, 2011, 23: 3723–3725CrossRefGoogle Scholar
  22. 22.
    Rabbani MG, El-Kaderi HM. Chem Mater, 2011, 23: 1650–1653CrossRefGoogle Scholar
  23. 23.
    Wang W, Zhou M, Yuan D. J Mater Chem A, 2017, 5: 1334–1347CrossRefGoogle Scholar
  24. 24.
    Li B, Zhang Y, Krishna R, Yao K, Han Y, Wu Z, Ma D, Shi Z, Pham T, Space B, Liu J, Thallapally PK, Liu J, Chrzanowski M, Ma S. J Am Chem Soc, 2014, 136: 8654–8660CrossRefGoogle Scholar
  25. 25.
    Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, Wang W, Xu J, Deng F, Simmons JM, Qiu S, Zhu G. Angew Chem Int Ed, 2009, 48: 9457–9460CrossRefGoogle Scholar
  26. 26.
    Holst JR, Stöckel E, Adams DJ, Cooper AI. Macromolecules, 2010, 43: 8531–8538CrossRefGoogle Scholar
  27. 27.
    Zhang C, Liu Y, Li B, Tan B, Chen CF, Xu HB, Yang XL. ACS Macro Lett, 2012, 1: 190–193CrossRefGoogle Scholar
  28. 28.
    Martín CF, Stöckel E, Clowes R, Adams DJ, Cooper AI, Pis JJ, Rubiera F, Pevida C. J Mater Chem, 2011, 21: 5475–5483CrossRefGoogle Scholar
  29. 29.
    Dawson R, Adams DJ, Cooper AI. Chem Sci, 2011, 2: 1173–1177CrossRefGoogle Scholar
  30. 30.
    Lu W, Yuan D, Sculley J, Zhao D, Krishna R, Zhou HC. J Am Chem Soc, 2011, 133: 18126–18129CrossRefGoogle Scholar
  31. 31.
    Huang N, Chen X, Krishna R, Jiang D. Angew Chem Int Ed, 2015, 54: 2986–2990CrossRefGoogle Scholar
  32. 32.
    Rabbani MG, Reich TE, Kassab RM, Jackson KT, El-Kaderi HM. Chem Commun, 2012, 48: 1141–1143CrossRefGoogle Scholar
  33. 33.
    Mohanty P, Kull LD, Landskron K. Nat Commun, 2011, 2: 401CrossRefGoogle Scholar
  34. 34.
    Lim H, Cha MC, Chang JY. Polym Chem, 2012, 3: 868–870CrossRefGoogle Scholar
  35. 35.
    Chen Q, Luo M, Hammershøj P, Zhou D, Han Y, Laursen BW, Yan CG, Han BH. J Am Chem Soc, 2012, 134: 6084–6087CrossRefGoogle Scholar
  36. 36.
    Katsoulidis AP, Kanatzidis MG. Chem Mater, 2011, 23: 1818–1824CrossRefGoogle Scholar
  37. 37.
    Huang N, Krishna R, Jiang D. J Am Chem Soc, 2015, 137: 7079–7082CrossRefGoogle Scholar
  38. 38.
    Lu W, Bosch M, Yuan D, Zhou HC. ChemSusChem, 2015, 8: 433–438CrossRefGoogle Scholar
  39. 39.
    Arab P, Rabbani MG, Sekizkardes AK, Islamoglu T, El-Kaderi HM. Chem Mater, 2014, 26: 1385–1392CrossRefGoogle Scholar
  40. 40.
    Jin T, Xiong Y, Zhu X, Tian Z, Tao DJ, Hu J, Jiang D, Wang H, Liu H, Dai S. Chem Commun, 2016, 52: 4454–4457CrossRefGoogle Scholar
  41. 41.
    Zhu X, Mahurin SM, An SH, Do-Thanh CL, Tian C, Li Y, Gill LW, Hagaman EW, Bian Z, Zhou JH, Hu J, Liu H, Dai S. Chem Commun, 2014, 50: 7933–7936CrossRefGoogle Scholar
  42. 42.
    Xie LH, Suh MP. Chem Eur J, 2013, 19: 11590–11597CrossRefGoogle Scholar
  43. 43.
    Zhu X, Tian C, Veith GM, Abney CW, Dehaudt J, Dai S. J Am Chem Soc, 2016, 138: 11497–11500CrossRefGoogle Scholar
  44. 44.
    Wang X, Zhao Y, Wei L, Zhang C, Jiang JX. J Mater Chem A, 2015, 3: 21185–21193CrossRefGoogle Scholar
  45. 45.
    Gu C, Liu D, Huang W, Liu J, Yang R. Polym Chem, 2015, 6: 7410–7417CrossRefGoogle Scholar
  46. 46.
    Sekizkardes AK, Altarawneh S, Kahveci Z, Islamoglu T, El-Kaderi HM. Macromolecules, 2014, 47: 8328–8334CrossRefGoogle Scholar
  47. 47.
    Song WC, Xu XK, Chen Q, Zhuang ZZ, Bu XH. Polym Chem, 2013, 4: 4690–4696CrossRefGoogle Scholar
  48. 48.
    Chen D, Gu S, Fu Y, Zhu Y, Liu C, Li G, Yu G, Pan C. Polym Chem, 2016, 7: 3416–3422CrossRefGoogle Scholar
  49. 49.
    Hu XM, Chen Q, Sui ZY, Zhao ZQ, Bovet N, Laursen BW, Han BH. RSC Adv, 2015, 5: 90135–90143CrossRefGoogle Scholar
  50. 50.
    Rabbani MG, El-Kaderi HM. Chem Mater, 2012, 24: 1511–1517CrossRefGoogle Scholar
  51. 51.
    Dawson R, Stevens LA, Drage TC, Snape CE, Smith MW, Adams DJ, Cooper AI. J Am Chem Soc, 2012, 134: 10741–10744CrossRefGoogle Scholar
  52. 52.
    Tan L, Tan B. Chem Soc Rev, 2017, 46: 3322–3356CrossRefGoogle Scholar
  53. 53.
    Wang S, Song K, Zhang C, Shu Y, Li T, Tan B. J Mater Chem A, 2017, 5: 1509–1515CrossRefGoogle Scholar
  54. 54.
    Chang D, Yu M, Zhang C, Zhao Y, Kong R, Xie F, Jiang JX. Microporous Mesoporous Mat, 2016, 228: 231–236CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ning Huang
    • 1
  • Gregory Day
    • 1
  • Xinyu Yang
    • 1
  • Hannah Drake
    • 1
  • Hong-Cai Zhou
    • 1
    Email author
  1. 1.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations