Advertisement

Science China Chemistry

, Volume 60, Issue 10, pp 1367–1376 | Cite as

120 mm single-crystalline perovskite and wafers: towards viable applications

  • Yucheng Liu
  • Xiaodong Ren
  • Jing Zhang
  • Zhou YangEmail author
  • Dong Yang
  • Fengyang Yu
  • Jiankun Sun
  • Changming Zhao
  • Zhun Yao
  • Bo Wang
  • Qingbo Wei
  • Fengwei Xiao
  • Haibo Fan
  • Hao Deng
  • Liangping Deng
  • Shengzhong Frank LiuEmail author
Articles

Abstract

As the large single-crystalline silicon wafers have revolutionized many industries including electronics and solar cells, it is envisioned that the availability of large single-crystalline perovskite crystals and wafers will revolutionize its broad applications in photovoltaics, optoelectronics, lasers, photodetectors, light emitting diodes (LEDs), etc. Here we report a method to grow large single-crystalline perovskites including single-halide crystals: CH3NH3PbX3 (X=I, Br, Cl), and dual-halide ones: CH3NH3Pb(Cl x Br1−x)3 and CH3NH3Pb(Br x I1−x)3, with the largest crystal being 120 mm in length. Meanwhile, we have advanced a process to slice the large perovskite crystals into thin wafers. It is found that the wafers exhibit remarkable features: (1) its trap-state density is a million times smaller than that in the microcrystalline perovskite thin films (MPTF); (2) its carrier mobility is 410 times higher than its most popular organic counterpart P3HT; (3) its optical absorption is expanded to as high as 910 nm comparing to 797 nm for the MPTF; (4) while MPTF decomposes at 150 °C, the wafer is stable at high temperature up to 270 °C; (5) when exposed to high humidity (75% RH), MPTF decomposes in 5 h while the wafer shows no change for overnight; (6) its photocurrent response is 250 times higher than its MPTF counterpart. A few electronic devices have been fabricated using the crystalline wafers. Among them, the Hall test gives low carrier concentration with high mobility. The trap-state density is measured much lower than common semiconductors. Moreover, the large SC-wafer is found particularly useful for mass production of integrated circuits. By adjusting the halide composition, both the optical absorption and the light emission can be fine-tuned across the entire visible spectrum from 400 nm to 800 nm. It is envisioned that a range of visible lasers and LEDs may be developed using the dual-halide perovskites. With fewer trap states, high mobility, broader absorption, and humidity resistance, it is expected that solar cells with high stable efficiency maybe attainable using the crystalline wafers.

Keywords

single-crystal growth perovskite wafer IC devices photodetector array 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Key Research Project MOST (2016YFA0202400), the National Natural Science Foundation of China (61604090, 61604091, 61674098), National University Research Fund (GK261001009, GK201603107), the Changjiang Scholar and Innovative Research Team (IRT_14R33), the 111 Project (B14041), the Chinese National 1000-talent-plan Program (1110010341), and the Innovation Funds of Graduate Programs, SNNU (2015CXS047). The authors would like to thank Prof. Ming Liu at the Xi’an Jiaotong University for the high resolution X-ray diffraction measurement and Prof. Yong Zhang at The University of North Carolina at Charlotte for insightful discussion.

Supplementary material

11426_2017_9081_MOESM1_ESM.pdf (6.1 mb)
120 Millimeter Single-Crystalline Perovskite and Wafers: Towards Viable Applications

References

  1. 1.
    Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. Adv Mater, 2014, 26: 1584–1589CrossRefGoogle Scholar
  2. 2.
    Shi D, Adinolfi V, Comin R, Yuan M, Alarousu E, Buin A, Chen Y, Hoogland S, Rothenberger A, Katsiev K, Losovyj Y, Zhang X, Dowben PA, Mohammed OF, Sargent EH, Bakr OM. Science, 2015, 347: 519–522CrossRefGoogle Scholar
  3. 3.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J. Science, 2015, 347: 967–970CrossRefGoogle Scholar
  4. 4.
    Best. Research Cell Efficiency Records, Nation Renewable Energy Laboratory (NREL). http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, accessed on 2017Google Scholar
  5. 5.
    Kumawat NK, Dey A, Narasimhan KL, Kabra D. ACS Photonics, 2015, 2: 349–354CrossRefGoogle Scholar
  6. 6.
    Kim YH, Cho H, Heo JH, Kim TS, Myoung NS, Lee CL, Im SH, Lee TW. Adv Mater, 2015, 27: 1248–1254CrossRefGoogle Scholar
  7. 7.
    Lee Y, Kwon J, Hwang E, Ra CH, Yoo WJ, Ahn JH, Park JH, Cho JH. Adv Mater, 2015, 27: 41–46CrossRefGoogle Scholar
  8. 8.
    Dong R, Fang Y, Chae J, Dai J, Xiao Z, Dong Q, Yuan Y, Centrone A, Zeng XC, Huang J. Adv Mater, 2015, 27: 1912–1918CrossRefGoogle Scholar
  9. 9.
    Xia HR, Li J, Sun WT, Peng LM. Chem Commun, 2014, 50: 13695–13697CrossRefGoogle Scholar
  10. 10.
    Xing G, Mathews N, Lim SS, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum TC. Nat Mater, 2014, 13: 476–480CrossRefGoogle Scholar
  11. 11.
    Deschler F, Price M, Pathak S, Klintberg LE, Jarausch DD, Higler R, Hüttner S, Leijtens T, Stranks SD, Snaith HJ, Atatüre M, Phillips RT, Friend RH. J Phys Chem Lett, 2014, 5: 1421–1426CrossRefGoogle Scholar
  12. 12.
    Shao Y, Xiao Z, Bi C, Yuan Y, Huang J. Nat Commun, 2014, 5: 5784CrossRefGoogle Scholar
  13. 13.
    Wetzelaer GJAH, Scheepers M, Sempere AM, Momblona C, Ávila J, Bolink HJ. Adv Mater, 2015, 27: 1837–1841CrossRefGoogle Scholar
  14. 14.
    Nelson RJ, Sobers RG. J Appl Phys, 1978, 49: 6103–6108CrossRefGoogle Scholar
  15. 15.
    Barnard ES, Hoke ET, Connor ST, Groves JR, Kuykendall T, Yan Z, Samulon EC, Bourret-Courchesne ED, Aloni S, Schuck PJ, Peters CH, Hardin BE. Sci Rep, 2013, 3: 2098CrossRefGoogle Scholar
  16. 16.
    Metzger WK, Repins IL, Contreras MA. Appl Phys Lett, 2008, 93: 022110CrossRefGoogle Scholar
  17. 17.
    Saidaminov MI, Abdelhady AL, Murali B, Alarousu E, Burlakov VM, Peng W, Dursun I, Wang L, He Y, Maculan G, Goriely A, Wu T, Mohammed OF, Bakr OM. Nat Commun, 2015, 6: 7586CrossRefGoogle Scholar
  18. 18.
    Dang Y, Liu Y, Sun Y, Yuan D, Liu X, Lu W, Liu G, Xia H, Tao X. CrystEngComm, 2015, 17: 665–670CrossRefGoogle Scholar
  19. 19.
    Liu Y, Yang Z, Cui D, Ren X, Sun J, Liu X, Zhang J, Wei Q, Fan H, Yu F, Zhang X, Zhao C, Liu SF. Adv Mater, 2015, 27: 5176–5183CrossRefGoogle Scholar
  20. 20.
    Baikie T, Fang Y, Kadro JM, Schreyer M, Wei F, Mhaisalkar SG, Graetzel M, White TJ. J Mater Chem A, 2013, 1: 5628–5641CrossRefGoogle Scholar
  21. 21.
    Sheng R, Ho-Baillie A, Huang S, Chen S, Wen X, Hao X, Green MA. J Phys Chem C, 2015, 119: 3545–3549CrossRefGoogle Scholar
  22. 22.
    Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N. Solid State Commun, 2003, 127: 619–623CrossRefGoogle Scholar
  23. 23.
    Bube RH. J Appl Phys, 1962, 33: 1733–1737CrossRefGoogle Scholar
  24. 24.
    Poglitsch A, Weber D. J Chem Phys, 1987, 87: 6373–6378CrossRefGoogle Scholar
  25. 25.
    Jiang XM, Österbacka R, Korovyanko O, An CP, Horovitz B, Janssen RAJ, Vardeny ZV. Adv Funct Mater, 2002, 12: 587–597CrossRefGoogle Scholar
  26. 26.
    Dualeh A, Tétreault N, Moehl T, Gao P, Nazeeruddin MK, Grätzel M. Adv Funct Mater, 2014, 24: 3250–3258CrossRefGoogle Scholar
  27. 27.
    Dualeh A, Gao P, Seok SI, Nazeeruddin MK, Grätzel M. Chem Mater, 2014, 26: 6160–6164CrossRefGoogle Scholar
  28. 28.
    Christians JA, Miranda Herrera PA, Kamat PV. J Am Chem Soc, 2015, 137: 1530–1538CrossRefGoogle Scholar
  29. 29.
    You J, Yang YM, Hong Z, Song TB, Meng L, Liu Y, Jiang C, Zhou H, Chang WH, Li G, Yang Y. Appl Phys Lett, 2014, 105: 183902CrossRefGoogle Scholar
  30. 30.
    Kumawat NK, Dey A, Kumar A, Gopinathan SP, Narasimhan KL, Kabra D. ACS Appl Mater Interfaces, 2015, 7: 13119–13124CrossRefGoogle Scholar
  31. 31.
    Jang DM, Park K, Kim DH, Park J, Shojaei F, Kang HS, Ahn JP, Lee JW, Song JK. Nano Lett, 2015, 15: 5191–5199CrossRefGoogle Scholar
  32. 32.
    Noh JH, Im SH, Heo JH, Mandal TN, Seok SI. Nano Lett, 2013, 13: 1764–1769CrossRefGoogle Scholar
  33. 33.
    Vegard L. Z Physik, 1921, 5: 17–26CrossRefGoogle Scholar
  34. 34.
    Butler KT, Frost JM, Walsh A. Mater Horiz, 2015, 2: 228–231CrossRefGoogle Scholar
  35. 35.
    Buin A, Comin R, Xu J, Ip AH, Sargent EH. Chem Mater, 2015, 27: 4405–4412CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yucheng Liu
    • 1
  • Xiaodong Ren
    • 1
  • Jing Zhang
    • 2
  • Zhou Yang
    • 1
    Email author
  • Dong Yang
    • 1
  • Fengyang Yu
    • 1
  • Jiankun Sun
    • 1
  • Changming Zhao
    • 1
  • Zhun Yao
    • 1
  • Bo Wang
    • 1
  • Qingbo Wei
    • 1
  • Fengwei Xiao
    • 1
  • Haibo Fan
    • 1
  • Hao Deng
    • 3
  • Liangping Deng
    • 3
  • Shengzhong Frank Liu
    • 1
    • 2
    Email author
  1. 1.Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Key Laboratory for Advanced Energy Devices; Shaanxi Engineering Laboratory for Advanced Energy Technology; School of Materials Science and EngineeringShaanxi Normal UniversityXi’anChina
  2. 2.iChEM, Dalian National Laboratory for Clean Energy; Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  3. 3.Xi’an LONGI Silicon Materials CorporationXi’anChina

Personalised recommendations