Skip to main content
Log in

Single-molecule imaging reveals the stoichiometry change of epidermal growth factor receptor during transactivation by β2-adrenergic receptor

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Stimulation of G protein-coupled receptors (GPCRs) can lead to the transactivation of the epidermal growth factor receptors (EGFR). The cross-communication between the two signaling pathways regulates several important physiological or pathological processes. However, the molecule mechanism underlying EGFR transactivation remains poorly understood. Here, we aim to study the GPCR-mediated EGFR transactivation process using the single-molecule fluorescence imaging and tracking approach. We found that although EGFR existed as monomers at the plasma membrane of resting cells, they became dimers and thus diffused slower following the activation of β2-adrenergic receptor (β2-AR) by isoproterenol (ISO). We further proved that β2-AR-mediated changes of EGFR in stoichiometry and dynamics were mediated by Src kinase. Thus, the observations obtained via the single-molecule imaging and tracking methods shed new insights into the molecular mechanism of EGFR transactivation at single molecule level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maudsley S, Pierce KL, Zamah AM, Miller WE, Ahn S, Daaka Y, Lefkowitz RJ, Luttrell LM. J Biol Chem, 2000, 275: 9572–9580

    Article  CAS  Google Scholar 

  2. Daub H, Ulrich Weiss F, Wallasch C, Ullrich A. Nature, 1996, 379: 557–560

    Article  CAS  Google Scholar 

  3. Cattaneo F, Guerra G, Parisi M, De Marinis M, Tafuri D, Cinelli M, Ammendola R. Int J Mol Sci, 2014, 15: 19700–19728

    Article  Google Scholar 

  4. Rockman HA, Koch WJ, Lefkowitz RJ. Nature, 2002, 415: 206–212

    Article  CAS  Google Scholar 

  5. Lymperopoulos A, Rengo G, Koch WJ. Circ Res, 2013, 113: 739–753

    Article  CAS  Google Scholar 

  6. Yarden Y, Sliwkowski MX. Nat Rev Mol Cell Biol, 2001, 2: 127–137

    Article  CAS  Google Scholar 

  7. Wang T. Sci China Chem, 2013, 56: 1344‒1350

    Article  CAS  Google Scholar 

  8. Wang SC, Sun M, Zhang YM, Zhang J, He LC. Sci China Chem, 2010, 53: 2357–2362

    Article  CAS  Google Scholar 

  9. Wang Z. Int J Mol Sci, 2016, 17: 95

    Article  Google Scholar 

  10. Forrester SJ, Kawai T, O’Brien S, Thomas W, Harris RC, Eguchi S. Annu Rev Pharmacol Toxicol, 2016, 56: 627–653

    Article  CAS  Google Scholar 

  11. Almendro V, Garcia-Recio S, Gascon P. Curr Drug Targets, 2010, 11: 1169–1180

    Article  CAS  Google Scholar 

  12. Drube S, Stirnweiss J, Valkova C, Liebmann C. Cell Signal, 2006, 18: 1633–1646

    Article  CAS  Google Scholar 

  13. Fischer OM, Hart S, Gschwind A, Ullrich A. Biochm Soc Trans, 2003, 31: 1203–1208

    Article  CAS  Google Scholar 

  14. Li Y, Zhang H, Liao W, Song Y, Ma X, Chen C, Lu Z, Li Z, Zhang Y. Am J Physiol Heart Circ Physiol, 2011, 301: H1941–H1951

    Google Scholar 

  15. Noma T, Lemaire A, Naga Prasad SV, Barki-Harrington L, Tilley DG, Chen J, Le Corvoisier P, Violin JD, Wei H, Lefkowitz RJ, Rockman HA. J Clin Invest, 2007, 117: 2445–2458

    Article  CAS  Google Scholar 

  16. Watson LJ, Alexander KM, Mohan ML, Bowman AL, Mangmool S, Xiao K, Naga Prasad SV, Rockman HA. Cell Signal, 2016, 28: 1580–1592

    Article  CAS  Google Scholar 

  17. Prenzel N, Zwick E, Daub H, Leserer M, Abraham R, Wallasch C, Ullrich A. Nature, 1999, 402: 884–888

    CAS  Google Scholar 

  18. Kim IM, Tilley DG, Chen J, Salazar NC, Whalen EJ, Violin JD, Rockman HA. Proc Natl Acad Sci USA, 2008, 105: 14555–14560

    Article  CAS  Google Scholar 

  19. Jorissen RN, Walker F, Pouliot N, Garrett TPJ, Ward CW, Burgess AW. Exp Cell Res, 2003, 284: 31–53

    Article  CAS  Google Scholar 

  20. Sako Y, Minoghchi S, Yanagida T. Nat Cell Biol, 2000, 2: 168–172

    Article  CAS  Google Scholar 

  21. Lemmon MA, Schlessinger J. Cell, 2010, 141: 1117–1134

    Article  CAS  Google Scholar 

  22. Chen C. Sci Bull, 2015, 60: 1787–1788

    Article  Google Scholar 

  23. Cheng M, Zhang W, Yuan J, Luo W, Li N, Lin S, Yang Y, Fang X, Chen PR. Chem Commun, 2014, 50: 14724–14727

    Article  CAS  Google Scholar 

  24. Chung I, Akita R, Vandlen R, Toomre D, Schlessinger J, Mellman I. Nature, 2010, 464: 783–787

    Article  CAS  Google Scholar 

  25. Li N, Yang Y, He K, Zhang F, Zhao L, Zhou W, Yuan J, Liang W, Fang X. Sci Rep, 2016, 6: 33469

    Article  CAS  Google Scholar 

  26. Yang Y, Xu Y, Xia T, Chen F, Zhang C, Liang W, Lai L, Fang X. Chem Commun, 2011, 47: 5440–5442

    Article  CAS  Google Scholar 

  27. Zhang W, Jiang Y, Wang Q, Ma X, Xiao Z, Zuo W, Fang X, Chen YG. Proc Natl Acad Sci USA, 2009, 106: 15679–15683

    Article  CAS  Google Scholar 

  28. He K, Fu Y, Zhang W, Yuan J, Li Z, Lv Z, Zhang Y, Fang X. Biochem Biophys Res Commun, 2011, 407: 313–317

    Article  CAS  Google Scholar 

  29. Ye Z, Li N, Zhao L, Sun Y, Ruan H, Zhang M, Yuan J, Fang X. Sci Bull, 2016, 61: 632–638

    Article  CAS  Google Scholar 

  30. Sun Y, Li N, Zhang M, Zhou W, Yuan J, Zhao R, Wu J, Li Z, Zhang Y, Fang X. Chem Commun, 2016, 52: 7086–7089

    Article  CAS  Google Scholar 

  31. Carter RE, Sorkin A. J Biol Chem, 1998, 273: 35000–35007

    Article  CAS  Google Scholar 

  32. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G. Nat Meth, 2008, 5: 695–702

    Article  CAS  Google Scholar 

  33. Shuang B, Byers CP, Kisley L, Wang LY, Zhao J, Morimura H, Link S, Landes CF. Langmuir, 2013, 29: 228–234

    Article  CAS  Google Scholar 

  34. Klein ME, Younts TJ, Castillo PE, Jordan BA. Proc Natl Acad Sci USA, 2013, 110: 3125–3130

    Article  CAS  Google Scholar 

  35. Adler J, Parmryd I. Cytometry, 2010, 77A: 733–742

    Article  Google Scholar 

  36. Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zürn A, Lohse MJ. Proc Natl Acad Sci USA, 2013, 110: 743–748

    Article  CAS  Google Scholar 

  37. Habuchi S, Fujiwara S, Yamamoto T, Vacha M, Tezuka Y. Anal Chem, 2013, 85: 7369–7376

    Article  CAS  Google Scholar 

  38. Kusumi A, Sako Y, Yamamoto M. Biophys J, 1993, 65: 2021–2040

    Article  CAS  Google Scholar 

  39. Bjorge JD, Pang AS, Funnell M, Chen KY, Diaz R, Magliocco AM, Fujita DJ. PLoS ONE, 2011, 6: e19309

    Google Scholar 

  40. Ji W, Xu P, Li Z, Lu J, Liu L, Zhan Y, Chen Y, Hille B, Xu T, Chen L. Proc Natl Acad Sci USA, 2008, 105: 13668–13673

    Article  CAS  Google Scholar 

  41. Yuan J, He K, Cheng M, Yu J, Fang X. Chem Asian J, 2014, 9: 2303–2308

    Article  CAS  Google Scholar 

  42. Huang Y, Bharill S, Karandur D, Peterson SM, Marita M, Shi X, Kaliszewski MJ, Smith AW, Isacoff EY, Kuriyan J. eLife, 2016, 5: e14107

    Google Scholar 

  43. Low-Nam ST, Lidke KA, Cutler PJ, Roovers RC, van Bergen en Henegouwen PMP, Wilson BS, Lidke DS. Nat Struct Mol Biol, 2011, 18: 1244–1249

    Article  CAS  Google Scholar 

  44. Jaqaman K, Kuwata H, Touret N, Collins R, Trimble WS, Danuser G, Grinstein S. Cell, 2011, 146: 593–606

    Article  CAS  Google Scholar 

  45. Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W. Proc Natl Acad Sci USA, 2006, 103: 2098–2102

    Article  CAS  Google Scholar 

  46. Tilley DG, Kim IM, Patel PA, Violin JD, Rockman HA. J Biol Chem, 2009, 284: 20375–20386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2013CB933701), the National Natural Science Foundation of China (81530009, 21127901, 91213305), and Chinese Academy of Science.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youyi Zhang or Xiaohong Fang.

Electronic supplementary material

11426_2017_9072_MOESM1_ESM.pdf

Single-molecule imaging reveals the stoichiometry change of epidermal growth factor receptor during transactivation by β2-adrenergic receptor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., He, K., Wu, J. et al. Single-molecule imaging reveals the stoichiometry change of epidermal growth factor receptor during transactivation by β2-adrenergic receptor. Sci. China Chem. 60, 1310–1317 (2017). https://doi.org/10.1007/s11426-017-9072-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9072-5

Keywords

Navigation