Skip to main content
Log in

Catalyst- and solvent-free, thermal generation of microporous polymer networks

  • Communications
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Multifunctional iodoaryl monomers were used for the catalyst- and solvent-free generation of microporous polymer networks of high surface areas up to 732 m2 g−1. The thermal conversion of the monomers relies on the homolytic cleavage of weak iodine–carbon bonds followed by a C–C coupling of the radicalic intermediates. By using tri- or tetrafunctional monomers and by tuning reaction temperature and time, the optimum reaction conditions allow the formation of the corresponding microporous networks in good yields of 71%–86%. The resulting networks exhibit notable high CO2 and H2 adsorption capacities of up to 8.89 wt% (273 K, 1 bar) and up to 1.31 wt% (77 K, 1 bar), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Wong YL, Tobin JM, Xu Z, Vilela F. J Mater Chem A, 2016, 4: 18677–18686

    Article  CAS  Google Scholar 

  2. Chang Z, Zhang DS, Chen Q, Bu XH. Phys Chem Chem Phys, 2013, 15: 5430–5442

    Article  CAS  Google Scholar 

  3. Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Chem Rev, 2012, 112: 3959–4015

    Article  CAS  Google Scholar 

  4. Cooper AI, Jiang J, Campbell N, Su F, Trewin A. Microporous polymers, methods for the preparation thereof, and uses thereof. GB Patent, WO2009/022187, 2009-02-19

  5. McKeown NB, Budd PM. Chem Soc Rev, 2006, 35: 675–683

    Article  CAS  Google Scholar 

  6. Jiang JX, Trewin A, Adams DJ, Cooper AI. Chem Sci, 2011, 2: 1777–1781

    Article  CAS  Google Scholar 

  7. Cao Q, Chen Q, Han BH. Acta Chim Sinica, 2015, 3: 541–556

    Article  Google Scholar 

  8. Wang T, Zhao YC, Luo M, Zhang LM, Cui Y, Zhang CS, Han BH. Polymer, 2015, 60: 26–31

    Article  CAS  Google Scholar 

  9. Dawson R, Cooper AI, Adams DJ. Prog Polymer Sci, 2012, 37: 530–563

    Article  CAS  Google Scholar 

  10. Preis E, Dong W, Brunklaus G, Scherf U. J Mater Chem C, 2015, 3: 1582–1587

    Article  CAS  Google Scholar 

  11. Cui Y, Zhao Y, Wang T, Han B. Chin J Chem, 2015, 33: 131–136

    Article  CAS  Google Scholar 

  12. Schmidt J, Werner M, Thomas A. Macromolecules, 2009, 42: 4426–4429

    Article  CAS  Google Scholar 

  13. Trunk M, Herrmann A, Bildirir H, Yassin A, Schmidt J, Thomas A. Chem Eur J, 2016, 22: 7179–7183

    Article  CAS  Google Scholar 

  14. Luo Y, Zhang S, Ma Y, Wang W, Tan B. Polym Chem, 2013, 4: 1126–1131

    Article  CAS  Google Scholar 

  15. Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Niu H, Dickinson C, Ganin AY, Rosseinsky MJ, Khimyak YZ, Cooper AI. Angew Chem Int Ed, 2007, 46: 8574–8578

    Article  CAS  Google Scholar 

  16. Zhang K, Tieke B, Vilela F, Skabara PJ. Macromol Rapid Commun, 2011, 32: 825–830

    Article  Google Scholar 

  17. Holst JR, Sto¨ckel E, Adams DJ, Cooper AI. Macromolecules, 2010, 43: 8531–8538

    Article  CAS  Google Scholar 

  18. Kuhn P, Forget A, Su D, Thomas A, Antonietti M. J Am Chem Soc, 2008, 130: 13333–13337

    Article  CAS  Google Scholar 

  19. Kuhn P, Antonietti M, Thomas A. Angew Chem Int Ed, 2008, 47: 3450–3453

    Article  CAS  Google Scholar 

  20. Sprick RS, Thomas A, Scherf U. Polym Chem, 2010, 1: 283–285

    Article  CAS  Google Scholar 

  21. Preis E, Schindler N, Adrian S, Scherf U. ACS Macro Lett, 2015, 4: 1268–1272

    Article  CAS  Google Scholar 

  22. Preis E, Widling C, Brunklaus G, Schmidt J, Thomas A, Scherf U. ACS Macro Lett, 2013, 2: 380–383

    Article  CAS  Google Scholar 

  23. Palma-Cando A, Scherf U. ACS Appl Mater Interfaces, 2015, 7: 11127–11133

    Article  CAS  Google Scholar 

  24. Palma-Cando A, Preis E, Scherf U. Macromolecules, 2016, 49: 8041–8047

    Article  CAS  Google Scholar 

  25. Palma-Cando A, Scherf U. Macromol Chem Phys, 2016, 217: 827–841

    Article  CAS  Google Scholar 

  26. Gu C, Huang N, Gao J, Xu F, Xu Y, Jiang D. Angew Chem Int Ed, 2014, 53: 4850–4855

    Article  CAS  Google Scholar 

  27. Aujard I, Baltaze JP, Baudin JB, Cogné E, Ferrage F, Jullien L, Perez É, Prévost V, Qian LM, Ruel O. J Am Chem Soc, 2001, 123: 8177–8188

    Article  CAS  Google Scholar 

  28. Lu W, Yuan D, Zhao D, Schilling CI, Plietzsch O, Muller T, Brase S, Guenther J, Blümel J, Krishna R, Li Z, Zhou HC. Chem Mater, 2010, 22: 5964–5972

    Article  CAS  Google Scholar 

  29. Tanaka K, Fujimoto D, Altreuther A, Oeser T, Irngartinger H, Toda F. J Chem Soc Perkin Trans 2, 2000, 2115–2120

    Google Scholar 

  30. Kotha S, Kashinath D, Lahiri K, Sunoj RB. Eur J Org Chem, 2004, 2004: 4003–4013

    Article  Google Scholar 

  31. Yuan K, Hu T, Xu Y, Graf R, Brunklaus G, Forster M, Chen Y, Scherf U. ChemElectroChem, 2016, 3: 822–828

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Venkata M. Suresh thanks the Alexander-von-Humboldt foundation for granting him a postdoc fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ullrich Scherf.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Widling, C., Forster, M., Suresh, V.M. et al. Catalyst- and solvent-free, thermal generation of microporous polymer networks. Sci. China Chem. 60, 1103–1106 (2017). https://doi.org/10.1007/s11426-017-9047-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9047-8

Keywords

Navigation