Science China Chemistry

, Volume 60, Issue 5, pp 649–655 | Cite as

Nanofabrication of the gold scanning probe for the STM-SECM coupling system with nanoscale spatial resolution

  • Fang-Fang Wang
  • Wei Wang
  • Xi He
  • Lianhuan Han
  • Jian-Zhang Zhou
  • Zhong-Qun Tian
  • Zhao-Wu Tian
  • Dongping Zhan
Articles

Abstract

Scanning probe is the key issue for the electrochemical scanning probe techniques (EC-SPM) such as EC-scanning tunnel microscopy (STM), EC-atomic force microscopy (AFM) and scanning electrochemical microscopy (SECM), especially the insulative encapsulation of the nanoelectrode probe for both positioning and electrochemical feedbacks. To solve this problem, we develop a novel fabrication method of the gold nanoelectrodes: firstly, a micropipette with nanomter-sized orifice was prepared as the template by a laser puller; secondly, the inside wall of micropipette apex was blocked by compact and conic Au nano-piece through electroless plating; thirdly, the Au nano-piece was grown by bipolar electroplating and connected with a silver wire as a current collector. The fabricated Au nanoelectrode has very good voltammetric responses for the electrodic processes of both mass transfer and adsorption. The advantage lies in that it is well encapsulated by a thin glass sealing layer with a RG value lowered to 1.3, which makes it qualified in the SECM-STM coupling mode. On one hand, it can serve as STM tip for positioning which ensures the high spatial resolution; on the other hand, it is a high-quality nanoelectrode to explore the local chemical activity of the substrate. The nanofabrication method may promote the SPM techniques to obtain simultaneously the physical and chemical images with nanoscale spatial resolution, which opens a new approach to tip chemistry in electrochemical nanocatalysis and tip-enhanced spectroscopy.

Keywords

scanning probe SECM bipolar nanoelectrode electrochemical imaging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11426_2017_9029_MOESM1_ESM.docx (5.7 mb)
Nanofabrication of Gold Scanning Probe for STM-SECM Coupling System with Nanoscale Spatial Resolution

References

  1. 1.
    Kim YG, Soriaga MP. J Electroanal Chem, 2014, 734: 7–9CrossRefGoogle Scholar
  2. 2.
    Madden C, Vaughn MD, Díez-Pérez I, Brown KA, King PW, Gust D, Moore AL, Moore TA. J Am Chem Soc, 2012, 134: 1577–1582CrossRefGoogle Scholar
  3. 3.
    Petrangolini P, Alessandrini A, Berti L, Facci P. J Am Chem Soc, 2010, 132: 7445–7453CrossRefGoogle Scholar
  4. 4.
    Derylo MA, Morton KC, Baker LA. Langmuir, 2011, 27: 13925–13930CrossRefGoogle Scholar
  5. 5.
    Lee E, Kim M, Seong J, Shin H, Lim G. Phys Status Solidi RRL, 2013, 7: 406–409CrossRefGoogle Scholar
  6. 6.
    Leonhardt K, Avdic A, Lugstein A, Pobelov I, Wandlowski T, Wu M, Gollas B, Denuault G. Anal Chem, 2011, 83: 2971–2977CrossRefGoogle Scholar
  7. 7.
    Wain AJ, Pollard AJ, Richter C. Anal Chem, 2014, 86: 5143–5149CrossRefGoogle Scholar
  8. 8.
    Li Y, Bergman D, Zhang B. Anal Chem, 2009, 81: 5496–5502CrossRefGoogle Scholar
  9. 9.
    Sun P, Mirkin MV. Anal Chem, 2006, 78: 6526–6534CrossRefGoogle Scholar
  10. 10.
    Zhan D, Velmurugan J, Mirkin MV. J Am Chem Soc, 2009, 131: 14756–14760CrossRefGoogle Scholar
  11. 11.
    Liu Y, Yao Q, Zhang X, Li M, Zhu A, Shi G. Biosens Bioelectron, 2015, 63: 262–268CrossRefGoogle Scholar
  12. 12.
    Wang Z, Zhang J, Yin Z, Wu S, Mandler D, Zhang H. Nanoscale, 2012, 4: 2728–2733CrossRefGoogle Scholar
  13. 13.
    Li Y, Cox JT, Zhang B. J Am Chem Soc, 2010, 132: 3047–3054CrossRefGoogle Scholar
  14. 14.
    Sánchez-Sánchez CM, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E. J Am Chem Soc, 2010, 132: 5622–5624CrossRefGoogle Scholar
  15. 15.
    Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N. Nat Nanotech, 2012, 7: 668–672CrossRefGoogle Scholar
  16. 16.
    Sun T, Yu Y, Zacher BJ, Mirkin MV. Angew Chem Int Ed, 2014, 53: 14120–14123CrossRefGoogle Scholar
  17. 17.
    Madiyar FR, Bhana S, Swisher LZ, Culbertson CT, Huang X, Li J. Nanoscale, 2015, 7: 3726–3736CrossRefGoogle Scholar
  18. 18.
    Sun G, Huang Y, Zheng L, Zhan Z, Zhang Y, Pang JHL, Wu T, Chen P. Nanoscale, 2011, 3: 4854–4858CrossRefGoogle Scholar
  19. 19.
    Kang M, Jung S, Zhang H, Kang T, Kang H, Yoo Y, Hong JP, Ahn JP, Kwak J, Jeon D, Kotov NA, Kim B. ACS Nano, 2014, 8: 8182–8189CrossRefGoogle Scholar
  20. 20.
    Pust SE, Salomo M, Oesterschulze E, Wittstock G. Nanotechnology, 2010, 21: 105709CrossRefGoogle Scholar
  21. 21.
    Salomo M, Pust SE, Wittstock G, Oesterschulze E. Microelec Eng, 2010, 87: 1537–1539CrossRefGoogle Scholar
  22. 22.
    Szunerits S, Pust SE, Wittstock G. Anal Bioanal Chem, 2007, 389: 1103–1120CrossRefGoogle Scholar
  23. 23.
    Tefashe UM, Wittstock G. Comptes Rendus Chimie, 2013, 16: 7–14CrossRefGoogle Scholar
  24. 24.
    Knittel P, Higgins MJ, Kranz C. Nanoscale, 2014, 6: 2255–2260CrossRefGoogle Scholar
  25. 25.
    Kranz C, Friedbacher G, Mizaikoff B, Lugstein A, Smoliner J, Bertagnolli E. Anal Chem, 2001, 73: 2491–2500CrossRefGoogle Scholar
  26. 26.
    Kueng A, Kranz C, Mizaikoff B, Lugstein A, Bertagnolli E. Appl Phys Lett, 2003, 82: 1592–1594CrossRefGoogle Scholar
  27. 27.
    Lugstein A, Bertagnolli E, Kranz C, Mizaikoff B. Surf Interface Anal, 2002, 33: 146–150CrossRefGoogle Scholar
  28. 28.
    Moon JS, Wiedemair J, Masson JF, Mizaikoff B, Kranz C. Microsc Microanal, 2007, 13: 58–59CrossRefGoogle Scholar
  29. 29.
    Kueng A, Kranz C, Lugstein A, Bertagnolli E, Mizaikoff B. Angew Chem Int Ed, 2003, 42: 3238–3240CrossRefGoogle Scholar
  30. 30.
    Macpherson JV, Jones CE, Barker AL, Unwin PR. Anal Chem, 2002, 74: 1841–1848CrossRefGoogle Scholar
  31. 31.
    Takahashi Y, Shiku H, Murata T, Yasukawa T, Matsue T. Anal Chem, 2009, 81: 9674–9681CrossRefGoogle Scholar
  32. 32.
    Walsh DA, Fernández JL, Mauzeroll J, Bard AJ. Anal Chem, 2005, 77: 5182–5188CrossRefGoogle Scholar
  33. 33.
    Wain AJ, Cox D, Zhou S, Turnbull A. Electrochem Commun, 2011, 13: 78–81CrossRefGoogle Scholar
  34. 34.
    Takahashi Y, Shevchuk AI, Novak P, Murakami Y, Shiku H, Korchev YE, Matsue T. J Am Chem Soc, 2010, 132: 10118–10126CrossRefGoogle Scholar
  35. 35.
    Li F, Hunt B, Sun P. Electroanalysis, 2013, 25: 787–792CrossRefGoogle Scholar
  36. 36.
    Velmurugan J, Sun P, Mirkin MV. J Phys Chem C, 2009, 113: 459–464CrossRefGoogle Scholar
  37. 37.
    Takahashi Y, Shevchuk AI, Novak P, Zhang Y, Ebejer N, Macpherson JV, Unwin PR, Pollard AJ, Roy D, Clifford CA, Shiku H, Matsue T, Klenerman D, Korchev YE. Angew Chem Int Ed, 2011, 50: 9638–9642CrossRefGoogle Scholar
  38. 38.
    McKelvey K, Nadappuram BP, Actis P, Takahashi Y, Korchev YE, Matsue T, Robinson C, Unwin PR. Anal Chem, 2013, 85: 7519–7526CrossRefGoogle Scholar
  39. 39.
    Ueda A, Niwa O, Maruyama K, Shindo Y, Oka K, Suzuki K. Angew Chem Int Ed, 2007, 46: 8238–8241CrossRefGoogle Scholar
  40. 40.
    Wang Y, Hernandez RM, Bartlett DJ, Bingham JM, Kline TR, Sen A, Mallouk TE. Langmuir, 2006, 22: 10451–10456CrossRefGoogle Scholar
  41. 41.
    Warakulwit C, Nguyen T, Majimel J, Delville MH, Lapeyre V, Garrigue P, Ravaine V, Limtrakul J, Kuhn A. Nano Lett, 2008, 8: 500–504CrossRefGoogle Scholar
  42. 42.
    Wood M, Zhang B. ACS Nano, 2015, 9: 2454–2464CrossRefGoogle Scholar
  43. 43.
    Bard AJ, Faulkner LR. Electrochemical Methods: Fundamentals and Applications. 2nd Ed. New York: Wiley, 2001Google Scholar
  44. 44.
    Shao Y, Mirkin MV, Fish G, Kokotov S, Palanker D, Lewis A. Anal Chem, 1997, 69: 1627–1634CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Fang-Fang Wang
    • 1
    • 2
  • Wei Wang
    • 1
  • Xi He
    • 1
  • Lianhuan Han
    • 1
  • Jian-Zhang Zhou
    • 1
  • Zhong-Qun Tian
    • 1
  • Zhao-Wu Tian
    • 1
  • Dongping Zhan
    • 1
  1. 1.State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical EngineeringXiamen UniversityXiamenChina
  2. 2.Chemical Engineering and Environmental Engineering, College of ChemistryLiaoning Shihua UniversityFushunChina

Personalised recommendations