Skip to main content
Log in

Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Graphene layers are often exposed to gaseous environments in their synthesis and application processes, and interactions of graphene surfaces with molecules particularly H2 and O2 are of great importance in their physico-chemical properties. In this work, etching of graphene overlayers on Pt(111) in H2 and O2 atmospheres were investigated by in-situ low energy electron microscopy. Significant graphene etching was observed in 10-5 Torr H2 above 1023 K, which occurs simultaneously at graphene island edges and interiors with a determined reaction barrier at 5.7 eV. The similar etching phenomena were found in 10-7 Torr O2 above 973 K, while only island edges were reacted between 823 and 923 K. We suggest that etching of graphene edges is facilitated by Pt-aided hydrogenation or oxidation of edge carbon atoms while intercalation-etching is attributed to etching at the interiors at high temperatures. The different findings with etching in O2 and H2 depend on competitive adsorption, desorption, and diffusion processes of O and H atoms on Pt surface, as well as intercalation at the graphene/Pt interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao L, Ren W, Zhao J, Ma LP, Chen Z, Cheng HM. Appl Phys Lett, 2010, 97: 183109

    Article  Google Scholar 

  2. Li J, Wang D, Wan LJ. Chem Commun, 2015, 51: 15486–15489

    Article  CAS  Google Scholar 

  3. Patchkovskii S, Tse JS, Yurchenko SN, Zhechkov L, Heine T, Seifert G. Proc Natl Acad Sci USA, 2005, 102: 10439–10444

    Article  CAS  Google Scholar 

  4. Wei D, Liu Y, Wang Y, Zhang H, Huang L, Yu G. Nano Lett, 2009, 9: 1752–1758

    Article  CAS  Google Scholar 

  5. Fu Q, Bao X. Chem Soc Rev, 2017, doi: 10.1039/c6cs00424e

    Google Scholar 

  6. Hu BS, Wei ZD, Ago H, Jin Y, Xia MR, Luo ZT, Pan QJ, Liu YL. Sci China Chem, 2014, 57: 895–901

    Article  CAS  Google Scholar 

  7. Liu N, Zhang J, Qiu Y, Yang J, Hu PA. Sci China Chem, 2016, 59: 707–712

    Article  CAS  Google Scholar 

  8. Chen S, Brown L, Levendorf M, Cai W, Ju SY, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Ruoff RS. ACS Nano, 2011, 5: 1321–1327

    Article  CAS  Google Scholar 

  9. Li D, Müller MB, Gilje S, Kaner RB, Wallace GG. Nat Nanotechnol, 2008, 3: 101–105

    Article  CAS  Google Scholar 

  10. Gong C, Floresca HC, Hinojos D, McDonnell S, Qin X, Hao Y, Jandhyala S, Mordi G, Kim J, Colombo L, Ruoff RS, Kim MJ, Cho K, Wallace RM, Chabal YJ. J Phys Chem C, 2013, 117: 23000–23008

    Article  CAS  Google Scholar 

  11. Singh Raman RK, Chakraborty Banerjee P, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, Choudhary L, Tkacz R, Ajayan PM, Majumder M. Carbon, 2012, 50: 4040–4045

    Article  CAS  Google Scholar 

  12. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS. Nat Mater, 2007, 6: 652–655

    Article  CAS  Google Scholar 

  13. Ng ML, Balog R, Hornekær L, Preobrajenski AB, Vinogradov NA, Mårtensson N, Schulte K. J Phys Chem C, 2010, 114: 18559–18565

    Article  CAS  Google Scholar 

  14. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA. Chem Mater, 2007, 19: 4396–4404

    Article  CAS  Google Scholar 

  15. Panchokarla LS, Subrahmanyam KS, Saha SK, Govindaraj A, Krishnamurthy HR, Waghmare UV, Rao C NR. Adv Mater, 2009, 21: 4726–4730

    Google Scholar 

  16. Han GH, Güneş F, Bae JJ, Kim ES, Chae SJ, Shin HJ, Choi JY, Pribat D, Lee YH. Nano Lett, 2011, 11: 4144–4148

    Article  CAS  Google Scholar 

  17. Liang T, He G, Huang G, Kong Y, Fu W, Chen H, Wang Q, Iwai H, Fujita D, Liu Y, Xu M. Adv Mater, 2015, 27: 6404–6410

    Article  CAS  Google Scholar 

  18. Hu B, Jin Y, Guan D, Luo Z, Shang B, Fang Q, Ruan H. J Phys Chem C, 2015, 119: 24124–24131

    Article  CAS  Google Scholar 

  19. Guo W, Wu B, Li Y, Wang L, Chen J, Chen B, Zhang Z, Peng L, Wang S, Liu Y. ACS Nano, 2015, 9: 5792–5798

    Article  CAS  Google Scholar 

  20. Geng D, Wu B, Guo Y, Luo B, Xue Y, Chen J, Yu G, Liu Y. J Am Chem Soc, 2013, 135: 6431–6434

    Article  CAS  Google Scholar 

  21. Gottardi S, Müller K, Bignardi L, Moreno-López JC, Pham TA, Ivashenko O, Yablonskikh M, Barinov A, Björk J, Rudolf P, Stöhr M. Nano Lett, 2015, 15: 917–922

    Article  CAS  Google Scholar 

  22. Xu X, Zhang Z, Qiu L, Zhuang J, Zhang L, Wang H, Liao C, Song H, Qiao R, Gao P, Hu Z, Liao L, Liao Z, Yu D, Wang E, Ding F, Peng H, Liu K. Nat Nanotech, 2016, 11: 930–935

    Article  CAS  Google Scholar 

  23. Zhang X, Wang L, Xin J, Yakobson BI, Ding F. J Am Chem Soc, 2014, 136: 3040–3047

    Article  CAS  Google Scholar 

  24. Vlassiouk I, Regmi M, Fulvio P, Dai S, Datskos P, Eres G, Smirnov S. ACS Nano, 2011, 5: 6069–6076

    Article  CAS  Google Scholar 

  25. Wei M, Fu Q, Wu H, Dong A, Bao X. Top Catal, 2016, 59: 543–549

    Article  CAS  Google Scholar 

  26. Hao Y, Bharathi MS, Wang L, Liu Y, Chen H, Nie S, Wang X, Chou H, Tan C, Fallahazad B, Ramanarayan H, Magnuson CW, Tutuc E, Yakobson BI, McCarty KF, Zhang YW, Kim P, Hone J, Colombo L, Ruoff RS. Science, 2013, 342: 720–723

    Article  CAS  Google Scholar 

  27. Marchon B, Carrazza J, Heinemann H, Somorjai GA. Carbon, 1988, 26: 507–514

    Article  CAS  Google Scholar 

  28. Sun T, Fabris S, Baroni S. J Phys Chem C, 2011, 115: 4730–4737

    Article  CAS  Google Scholar 

  29. Sutter P, Sadowski JT, Sutter EA. J Am Chem Soc, 2010, 132: 8175–8179

    Article  CAS  Google Scholar 

  30. Zhang Y, Wei M, Fu Q, Bao X. Sci Bull, 2015, 60: 1572–1579

    Article  CAS  Google Scholar 

  31. Starodub E, Bartelt NC, McCarty KF. J Phys Chem C, 2010, 114: 5134–5140

    Article  CAS  Google Scholar 

  32. Sutter P, Sadowski JT, Sutter E. Phys Rev B, 2009, 80: 245411

    Article  Google Scholar 

  33. Iwasaki T, Zakharov AA, Eelbo T, Waśniowska M, Wiesendanger R, Smet JH, Starke U. Surf Sci, 2014, 625: 44–49

    Article  CAS  Google Scholar 

  34. Gould RK. J Chem Phys, 1975, 63: 1825–1836

    Article  CAS  Google Scholar 

  35. Grånäs E, Gerber T, Schröder UA, Schulte K, Andersen JN, Michely T, Knudsen J. Surface Sci, 2016, 651: 57–61

    Article  Google Scholar 

  36. Cui Y, Fu Q, Zhang H, Tan D, Bao X. J Phys Chem C, 2009, 113: 20365–20370

    Article  CAS  Google Scholar 

  37. Grånäs E, Knudsen J, Schröder UA, Gerber T, Busse C, Arman MA, Schulte K, Andersen JN, Michely T. ACS Nano, 2012, 6: 9951–9963

    Article  Google Scholar 

  38. Johánek V, Cushing GW, Navin JK, Harrison I. Surface Sci, 2016, 644: 165–169

    Article  Google Scholar 

  39. Weaver JF, Chen JJ, Gerrard AL. Surface Sci, 2005, 592: 83–103

    Article  CAS  Google Scholar 

  40. Norton PR, Davies JA, Jackman TE. Surface Sci, 1982, 121: 103–110

    Article  CAS  Google Scholar 

  41. Brugger T, Ma H, Iannuzzi M, Berner S, Winkler A, Hutter J, Osterwalder J, Greber T. Angew Chem Int Ed, 2010, 49: 6120–6124

    Article  CAS  Google Scholar 

  42. Balooch M, Olander DR. J Chem Phys, 1975, 63: 4772–4786

    Article  CAS  Google Scholar 

  43. Sutter P, Albrecht P, Tong X, Sutter E. J Phys Chem C, 2013, 117: 6320–6324

    Article  CAS  Google Scholar 

  44. Larciprete R, Ulstrup S, Lacovig P, Dalmiglio M, Bianchi M, Mazzola F, Hornekær L, Orlando F, Baraldi A, Hofmann P, Lizzit S. ACS Nano, 2012, 6: 9551–9558

    Article  CAS  Google Scholar 

  45. Schröder UA, Grånäs E, Gerber T, Arman MA, Martínez-Galera AJ, Schulte K, Andersen JN, Knudsen J, Michely T. Carbon, 2016, 96: 320–331

    Article  Google Scholar 

  46. Enderlein C, Kim YS, Bostwick A, Rotenberg E, Horn K. New J Phys, 2010, 12: 033014

    Article  Google Scholar 

  47. Preobrajenski AB, Ng ML, Vinogradov AS, Mårtensson N. Phys Rev B, 2008, 78: 073401

    Article  Google Scholar 

  48. Vanin M, Mortensen JJ, Kelkkanen AK, Garcia-Lastra JM, Thygesen KS, Jacobsen KW. Phys Rev B, 2010, 81: 081408

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21373208, 21688102, 91545204, 21621063), Ministry of Science and Technology of China (2016YFA0200200, 2013CB834603, 2013CB933100), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB17020200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Fu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Meng, C., Fu, Q. et al. Intercalation-etching of graphene on Pt(111) in H2 and O2 observed by in-situ low energy electron microscopy. Sci. China Chem. 60, 656–662 (2017). https://doi.org/10.1007/s11426-017-9020-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-017-9020-2

Keywords

Navigation