Advertisement

Science China Chemistry

, Volume 60, Issue 7, pp 870–886 | Cite as

Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes

  • Jianjian WangEmail author
  • Jinxu Xi
  • Qineng Xia
  • Xiaohui Liu
  • Yanqin WangEmail author
Reviews

Abstract

With concerns of diminishing fossil fuel reserves and environmental deterioration, great efforts have been made to explore novel approaches of efficiently utilizing bio-renewable feedstocks to produce chemicals and fuels. 5-Hydroxymethylfurfural (HMF), generated from dehydration of six-carbon ketose, is regarded as a primary and versatile renewable building block to realize the goal of production of these high valued products from renewable biomass resources transformation. In this review, we summarize the recent advances via green routes in the heterogeneous reaction system for the catalytic production of HMF from glucose conversion, and emphasize reaction pathways of these reaction approaches based on the fundamental mechanistic chemistry as well as highlight the challenges (such as separation and purification of products, reusing and regeneration of catalyst, recycling solvent) in this field.

Keywords

5-hydroxymethylfurfural glucose heterogeneous catalysis green route 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91545103, 21273071, 21403065), and the Commission of Science and Technology of Shanghai Municipality (10dz2220500).

References

  1. 1.
    Cai H, Li C, Wang A, Zhang T. Catal Today, 2014, 234: 59–65CrossRefGoogle Scholar
  2. 2.
    Delidovich I, Palkovits R. ChemSusChem, 2016, 9: 547–561CrossRefGoogle Scholar
  3. 3.
    Deng W, Zhang Q, Wang Y. Catal Today, 2014, 234: 31–41CrossRefGoogle Scholar
  4. 4.
    Farrán A, Cai C, Sandoval M, Xu Y, Liu J, Hernáiz MJ, Linhardt RJ. Chem Rev, 2015, 115: 6811–6853CrossRefGoogle Scholar
  5. 5.
    Liu X, Wang X, Yao S, Jiang Y, Guan J, Mu X. RSC Adv, 2014, 4: 49501–49520CrossRefGoogle Scholar
  6. 6.
    Luterbacher JS, Martin Alonso D, Dumesic JA. Green Chem, 2014, 16: 4816–4838CrossRefGoogle Scholar
  7. 7.
    Wang L, Xiao FS. Green Chem, 2015, 17: 24–39CrossRefGoogle Scholar
  8. 8.
    Zhang X, Wilson K, Lee AF. Chem Rev, 2016, 116: 12328–12368CrossRefGoogle Scholar
  9. 9.
    Caratzoulas S, Davis ME, Gorte RJ, Gounder R, Lobo RF, Nikolakis V, Sandler SI, Snyder MA, Tsapatsis M, Vlachos DG. J Phys Chem C, 2014, 118: 22815–22833CrossRefGoogle Scholar
  10. 10.
    Chatterjee C, Pong F, Sen A. Green Chem, 2015, 17: 40–71CrossRefGoogle Scholar
  11. 11.
    Wang J, Xi J, Wang Y. Green Chem, 2015, 17: 737–751CrossRefGoogle Scholar
  12. 12.
    Rosatella AA, Simeonov SP, Frade RFM, Afonso CAM. Green Chem, 2011, 13: 754–793CrossRefGoogle Scholar
  13. 13.
    Chinnappan A, Baskar C, Kim H. RSC Adv, 2016, 6: 63991–64002CrossRefGoogle Scholar
  14. 14.
    Saha B, Abu-Omar MM. Green Chem, 2014, 16: 24–38CrossRefGoogle Scholar
  15. 15.
    Teong SP, Yi G, Zhang Y. Green Chem, 2014, 16: 2015–2026CrossRefGoogle Scholar
  16. 16.
    Wang T, Nolte MW, Shanks BH. Green Chem, 2014, 16: 548–572CrossRefGoogle Scholar
  17. 17.
    Xue Z, Ma MG, Li Z, Mu T. RSC Adv, 2016, 6: 98874–98892CrossRefGoogle Scholar
  18. 18.
    Chheda JN, Huber GW, Dumesic JA. Angew Chem Int Ed, 2007, 46: 7164–7183CrossRefGoogle Scholar
  19. 19.
    Tong X, Ma Y, Li Y. Appl Catal A-Gen, 2010, 385: 1–13CrossRefGoogle Scholar
  20. 20.
    Assary RS, Curtiss LA. Energy Fuels, 2012, 26: 1344–1352CrossRefGoogle Scholar
  21. 21.
    Boronat M, Concepcion P, Corma A, Renz M, Valencia S. J Catal, 2005, 234: 111–118CrossRefGoogle Scholar
  22. 22.
    Li G, Pidko EA, Hensen EJM. ACS Catal, 2016, 6: 4162–4169CrossRefGoogle Scholar
  23. 23.
    Li J, Li J, Zhang D, Liu C. J Phys Chem B, 2015, 119: 13398–13406CrossRefGoogle Scholar
  24. 24.
    Li YP, Head-Gordon M, Bell AT. ACS Catal, 2014, 4: 1537–1545CrossRefGoogle Scholar
  25. 25.
    Loerbroks C, van Rijn J, Ruby MP, Tong Q, Schüth F, Thiel W. Chem Eur J, 2014, 20: 12298–12309CrossRefGoogle Scholar
  26. 26.
    Pidko EA, Degirmenci V, Hensen EJM. ChemCatChem, 2012, 4: 1263–1271CrossRefGoogle Scholar
  27. 27.
    Pidko EA, Degirmenci V, van Santen RA, Hensen EJM. Angew Chem Int Ed, 2010, 49: 2530–2534CrossRefGoogle Scholar
  28. 28.
    Qian X. J Phys Chem B, 2013, 117: 11460–11465CrossRefGoogle Scholar
  29. 29.
    Qian X, Wei X. J Phys Chem B, 2012, 116: 10898–10904CrossRefGoogle Scholar
  30. 30.
    Rai N, Caratzoulas S, Vlachos DG. ACS Catal, 2013, 3: 2294–2298CrossRefGoogle Scholar
  31. 31.
    Saravanamurugan S, Riisager A, Taarning E, Meier S. ChemCatChem, 2016, 8: 3107–3111CrossRefGoogle Scholar
  32. 32.
    Yang G, Pidko EA, Hensen EJM. ChemSusChem, 2013, 6: 1688–1696CrossRefGoogle Scholar
  33. 33.
    Yang L, Tsilomelekis G, Caratzoulas S, Vlachos DG. ChemSusChem, 2015, 8: 1334–1341CrossRefGoogle Scholar
  34. 34.
    Zhang ZC. Adv Catal, 2006, 49: 153–237Google Scholar
  35. 35.
    Zhao H, Holladay JE, Brown H, Zhang ZC. Science, 2007, 316: 1597–1600CrossRefGoogle Scholar
  36. 36.
    Fenn TD, Ringe D, Petsko GA. Biochemistry, 2004, 43: 6464–6474CrossRefGoogle Scholar
  37. 37.
    Moliner M, Román-Leshkov Y, Davis ME. Proc Natl Acad Sci USA, 2010, 107: 6164–6168CrossRefGoogle Scholar
  38. 38.
    Nikolla E, Román-Leshkov Y, Moliner M, Davis ME. ACS Catal, 2011, 1: 408–410CrossRefGoogle Scholar
  39. 39.
    Román-Leshkov Y, Moliner M, Labinger JA, Davis ME. Angew Chem Int Ed, 2010, 49: 8954–8957CrossRefGoogle Scholar
  40. 40.
    Bermejo-Deval R, Gounder R, Davis ME. ACS Catal, 2012, 2: 2705–2713CrossRefGoogle Scholar
  41. 41.
    Bermejo-Deval R, Assary RS, Nikolla E, Moliner M, Román-Leshkov Y, Hwang SJ, Palsdottir A, Silverman D, Lobo RF, Curtiss LA, Davis ME. Proc Natl Acad Sci USA, 2012, 109: 9727–9732CrossRefGoogle Scholar
  42. 42.
    Yu Y, Wu H. Ind Eng Chem Res, 2011, 50: 10500–10508CrossRefGoogle Scholar
  43. 43.
    Aida TM, Sato Y, Watanabe M, Tajima K, Nonaka T, Hattori H, Arai K. J Supercrit Fluid, 2007, 40: 381–388CrossRefGoogle Scholar
  44. 44.
    Lee YC, Chen CT, Chiu YT, Wu KCW. ChemCatChem, 2013, 5: 2153–2157CrossRefGoogle Scholar
  45. 45.
    Vennestrøm PNR, Christensen CH, Pedersen S, Grunwaldt JD, Woodley JM. ChemCatChem, 2010, 2: 249–258CrossRefGoogle Scholar
  46. 46.
    Huang R, Qi W, Su R, He Z. Chem Commun, 2010, 46: 1115–1117CrossRefGoogle Scholar
  47. 47.
    Grande PM, Bergs C, Domínguez de María P. ChemSusChem, 2012, 5: 1203–1206CrossRefGoogle Scholar
  48. 48.
    Simeonov SP, Coelho JAS, Afonso CAM. ChemSusChem, 2013, 6: 997–1000CrossRefGoogle Scholar
  49. 49.
    Huang H, Denard CA, Alamillo R, Crisci AJ, Miao Y, Dumesic JA, Scott SL, Zhao H. ACS Catal, 2014, 4: 2165–2168CrossRefGoogle Scholar
  50. 50.
    Delidovich I, Palkovits R. Catal Sci Technol, 2014, 4: 4322–4329CrossRefGoogle Scholar
  51. 51.
    Liu C, Carraher JM, Swedberg JL, Herndon CR, Fleitman CN, Tessonnier JP. ACS Catal, 2014, 4: 4295–4298CrossRefGoogle Scholar
  52. 52.
    Yang Q, Sherbahn M, Runge T. ACS Sustain Chem Eng, 2016, 4: 3526–3534CrossRefGoogle Scholar
  53. 53.
    Yang Q, Zhou S, Runge T. J Catal, 2015, 330: 474–484CrossRefGoogle Scholar
  54. 54.
    Watanabe M, Aizawa Y, Iida T, Aida TM, Levy C, Sue K, Inomata H. Carbohyd Res, 2005, 340: 1925–1930CrossRefGoogle Scholar
  55. 55.
    Qi X, Watanabe M, Aida TM, Smith Jr RL. Catal Commun, 2008, 9: 2244–2249CrossRefGoogle Scholar
  56. 56.
    Ohara M, Takagaki A, Nishimura S, Ebitani K. Appl Catal A-Gen, 2010, 383: 149–155CrossRefGoogle Scholar
  57. 57.
    Takagaki A, Ohara M, Nishimura S, Ebitani K. Chem Commun, 2009: 6276–6278Google Scholar
  58. 58.
    Yu S, Kim E, Park S, Song IK, Jung JC. Catal Commun, 2012, 29: 63–67CrossRefGoogle Scholar
  59. 59.
    Despax S, Estrine B, Hoffmann N, Le Bras J, Marinkovic S, Muzart J. Catal Commun, 2013, 39: 35–38CrossRefGoogle Scholar
  60. 60.
    Román-Leshkov Y, Davis ME. ACS Catal, 2011, 1: 1566–1580CrossRefGoogle Scholar
  61. 61.
    Cao Q, Guo X, Yao S, Guan J, Wang X, Mu X, Zhang D. Carbohyd Res, 2011, 346: 956–959CrossRefGoogle Scholar
  62. 62.
    Hu L, Sun Y, Lin L. Ind Eng Chem Res, 2012, 51: 1099–1104CrossRefGoogle Scholar
  63. 63.
    Liu W, Holladay J. Catal Today, 2013, 200: 106–116CrossRefGoogle Scholar
  64. 64.
    Pidko EA, Degirmenci V, van Santen RA, Hensen EJM. Inorg Chem, 2010, 49: 10081–10091CrossRefGoogle Scholar
  65. 65.
    Binder JB, Cefali AV, Blank JJ, Raines RT. Energy Environ Sci, 2010, 3: 765–771CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Pidko EA, Hensen EJM. Chem Eur J, 2011, 17: 5281–5288CrossRefGoogle Scholar
  67. 67.
    He J, Zhang Y, Chen EYX. ChemSusChem, 2013, 6: 61–64CrossRefGoogle Scholar
  68. 68.
    Yong G, Zhang Y, Ying JY. Angew Chem Int Ed, 2008, 47: 9345–9348CrossRefGoogle Scholar
  69. 69.
    Qi X, Watanabe M, Aida TM, Smith Jr RL. ChemSusChem, 2010, 3: 1071–1077CrossRefGoogle Scholar
  70. 70.
    Zhang Z, Zhao ZK. Bioresource Tech, 2011, 102: 3970–3972CrossRefGoogle Scholar
  71. 71.
    Degirmenci V, Pidko EA, Magusin PCMM, Hensen EJM. ChemCatChem, 2011, 3: 969–972CrossRefGoogle Scholar
  72. 72.
    Choudhary V, Mushrif SH, Ho C, Anderko A, Nikolakis V, Marinkovic NS, Frenkel AI, Sandler SI, Vlachos DG. J Am Chem Soc, 2013, 135: 3997–4006CrossRefGoogle Scholar
  73. 73.
    Pagán-Torres YJ, Wang T, Gallo JMR, Shanks BH, Dumesic JA. ACS Catal, 2012, 2: 930–934CrossRefGoogle Scholar
  74. 74.
    Zhou X, Zhang Z, Liu B, Xu Z, Deng K. Carbohyd Res, 2013, 375: 68–72CrossRefGoogle Scholar
  75. 75.
    Deng T, Cui X, Qi Y, Wang Y, Hou X, Zhu Y. Chem Commun, 2012, 48: 5494–5496CrossRefGoogle Scholar
  76. 76.
    Zhang Z, Wang Q, Xie H, Liu W, Zhao ZK. ChemSusChem, 2011, 4: 131–138CrossRefGoogle Scholar
  77. 77.
    Zhang Z, Liu B, Zhao ZK. Starch-Stärke, 2012, 64: 770–775CrossRefGoogle Scholar
  78. 78.
    Hu S, Zhang Z, Song J, Zhou Y, Han B. Green Chem, 2009, 11: 1746–1749CrossRefGoogle Scholar
  79. 79.
    Assary RS, Redfern PC, Hammond JR, Greeley J, Curtiss LA. J Phys Chem B, 2010, 114: 9002–9009CrossRefGoogle Scholar
  80. 80.
    Ding D, Wang J, Xi J, Liu X, Lu G, Wang Y. Green Chem, 2014, 16: 3846–3853CrossRefGoogle Scholar
  81. 81.
    Upare PP, Yoon JW, Kim MY, Kang HY, Hwang DW, Hwang YK, Kung HH, Chang JS. Green Chem, 2013, 15: 2935–2943CrossRefGoogle Scholar
  82. 82.
    Weingarten R, Cho J, Xing R, Conner Jr WC, Huber GW. ChemSusChem, 2012, 5: 1280–1290CrossRefGoogle Scholar
  83. 83.
    Weingarten R, Kim YT, Tompsett GA, Fernández A, Han KS, Hagaman EW, Conner Jr WC, Dumesic JA, Huber GW. J Catal, 2013, 304: 123–134CrossRefGoogle Scholar
  84. 84.
    Liu B, Zhang Z. RSC Adv, 2013, 3: 12313–12319CrossRefGoogle Scholar
  85. 85.
    Liu B, Zhang Z, Huang K, Fang Z. Fuel, 2013, 113: 625–631CrossRefGoogle Scholar
  86. 86.
    Peng L, Lin L, Zhang J, Shi J, Liu S. Appl Catal A-Gen, 2011, 397: 259–265CrossRefGoogle Scholar
  87. 87.
    Saravanamurugan S, Riisager A. ChemCatChem, 2013, 5: 1754–1757CrossRefGoogle Scholar
  88. 88.
    Saravanamurugan S, Nguyen Van Buu O, Riisager A. ChemSusChem, 2011, 4: 723–726CrossRefGoogle Scholar
  89. 89.
    Chang CC, Wang Z, Dornath P, Je Cho H, Fan W. RSC Adv, 2012, 2: 10475–10477CrossRefGoogle Scholar
  90. 90.
    Dijkmans J, Gabriëls D, Dusselier M, de Clippel F, Vanelderen P, Houthoofd K, Malfliet A, Pontikes Y, Sels BF. Green Chem, 2013, 15: 2777–2785CrossRefGoogle Scholar
  91. 91.
    Corma A, Domine ME, Nemeth L, Valencia S. J Am Chem Soc, 2002, 124: 3194–3195CrossRefGoogle Scholar
  92. 92.
    Roy S, Bakhmutsky K, Mahmoud E, Lobo RF, Gorte RJ. ACS Catal, 2013, 3: 573–580CrossRefGoogle Scholar
  93. 93.
    Lew CM, Rajabbeigi N, Tsapatsis M. Micropor Mesopor Mater, 2012, 153: 55–58CrossRefGoogle Scholar
  94. 94.
    Saravanamurugan S, Paniagua M, Melero JA, Riisager A. J Am Chem Soc, 2013, 135: 5246–5249CrossRefGoogle Scholar
  95. 95.
    Zhang L, Xi G, Chen Z, Qi Z, Wang X. Chem Eng J, 2017, 307: 877–883CrossRefGoogle Scholar
  96. 96.
    Gardner DW, Huo J, Hoff TC, Johnson RL, Shanks BH, Tessonnier JP. ACS Catal, 2015, 5: 4418–4422CrossRefGoogle Scholar
  97. 97.
    Otomo R, Yokoi T, Tatsumi T. ChemCatChem, 2015, 7: 4180–4187CrossRefGoogle Scholar
  98. 98.
    Faria J, Pilar Ruiz M, Resasco DE. ACS Catal, 2015, 5: 4761–4771CrossRefGoogle Scholar
  99. 99.
    Wang J, Ren J, Liu X, Xi J, Xia Q, Zu Y, Lu G, Wang Y. Green Chem, 2012, 14: 2506–2512CrossRefGoogle Scholar
  100. 100.
    Osatiashtiani A, Lee AF, Brown DR, Melero JA, Morales G, Wilson K. Catal Sci Technol, 2014, 4: 333–342CrossRefGoogle Scholar
  101. 101.
    Dutta A, Patra AK, Dutta S, Saha B, Bhaumik A. J Mater Chem, 2012, 22: 14094–14100CrossRefGoogle Scholar
  102. 102.
    Atanda L, Mukundan S, Shrotri A, Ma Q, Beltramini J. ChemCatChem, 2015, 7: 781–790CrossRefGoogle Scholar
  103. 103.
    Dutta A, Gupta D, Patra AK, Saha B, Bhaumik A. ChemSusChem, 2014, 7: 925–933CrossRefGoogle Scholar
  104. 104.
    Ordomsky VV, van der Schaaf J, Schouten JC, Nijhuis TA. ChemSusChem, 2013, 6: 1697–1707CrossRefGoogle Scholar
  105. 105.
    Ordomsky VV, Sushkevich VL, Schouten JC, van der Schaaf J, Nijhuis TA. J Catal, 2013, 300: 37–46CrossRefGoogle Scholar
  106. 106.
    Osatiashtiani A, Lee AF, Granollers M, Brown DR, Olivi L, Morales G, Melero JA, Wilson K. ACS Catal, 2015, 5: 4345–4352CrossRefGoogle Scholar
  107. 107.
    Atanda L, Silahua A, Mukundan S, Shrotri A, Torres-Torres G, Beltramini J. RSC Adv, 2015, 5: 80346–80352CrossRefGoogle Scholar
  108. 108.
    Nakajima K, Baba Y, Noma R, Kitano M, Kondo NJ, Hayashi S, Hara M. J Am Chem Soc, 2011, 133: 4224–4227CrossRefGoogle Scholar
  109. 109.
    Yang F, Liu Q, Bai X, Du Y. Bioresource Tech, 2011, 102: 3424–3429CrossRefGoogle Scholar
  110. 110.
    Zhang Y, Wang J, Ren J, Liu X, Li X, Xia Y, Lu G, Wang Y. Catal Sci Technol, 2012, 2: 2485–2491CrossRefGoogle Scholar
  111. 111.
    Zhang Y, Wang J, Li X, Liu X, Xia Y, Hu B, Lu G, Wang Y. Fuel, 2015, 139: 301–307CrossRefGoogle Scholar
  112. 112.
    Kreissl HT, Nakagawa K, Peng YK, Koito Y, Zheng J, Tsang SCE. J Catal, 2016, 338: 329–339CrossRefGoogle Scholar
  113. 113.
    Jiao H, Zhao X, Lv C, Wang Y, Yang D, Li Z, Yao X. Sci Rep, 2016, 6: 34068CrossRefGoogle Scholar
  114. 114.
    Fan W, Zhang Q, Deng W, Wang Y. Chem Mater, 2013, 25: 3277–3287CrossRefGoogle Scholar
  115. 115.
    Yue C, Li G, Pidko EA, Wiesfeld JJ, Rigutto M, Hensen EJM. ChemSusChem, 2016, 9: 2421–2429CrossRefGoogle Scholar
  116. 116.
    Yang F, Liu Q, Yue M, Bai X, Du Y. Chem Commun, 2011, 47: 4469–4471CrossRefGoogle Scholar
  117. 117.
    Jiménez-Morales I, Teckchandani-Ortiz A, Santamaría-González J, Maireles-Torres P, Jiménez-López A. Appl Catal B-Environ, 2014, 144: 22–28CrossRefGoogle Scholar
  118. 118.
    Zhang Y, Degirmenci V, Li C, Hensen EJM. ChemSusChem, 2011, 4: 59–64CrossRefGoogle Scholar
  119. 119.
    Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X. Biomass Bioenergy, 2011, 35: 2659–2665CrossRefGoogle Scholar
  120. 120.
    Su Y, Chang G, Zhang Z, Xing H, Su B, Yang Q, Ren Q, Yang Y, Bao Z. AIChE J, 2016, 62: 4403–4417CrossRefGoogle Scholar
  121. 121.
    Zhang Z, Du B, Zhang LJ, Da YX, Quan ZJ, Yang LJ, Wang XC. RSC Adv, 2013, 3: 9201–9205CrossRefGoogle Scholar
  122. 122.
    Cao X, Teong SP, Wu D, Yi G, Su H, Zhang Y. Green Chem, 2015, 17: 2348–2352CrossRefGoogle Scholar
  123. 123.
    Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A. Chem Eur J, 2011, 17: 1456–1464CrossRefGoogle Scholar
  124. 124.
    Wang HY, Liu SY, Zhao YL, Zhang HC, Wang JJ. ACS Sustain Chem Eng, 2016, doi: 10.1021/acssuschemeng.1026b01652Google Scholar
  125. 125.
    Zhou J, Huang T, Zhao Y, Xia Z, Xu Z, Jia S, Wang J, Zhang ZC. Ind Eng Chem Res, 2015, 54: 7977–7983CrossRefGoogle Scholar
  126. 126.
    Liu W, Richard Zheng F, Li J, Cooper A. AIChE J, 2014, 60: 300–314CrossRefGoogle Scholar
  127. 127.
    Su Y, Brown HM, Huang X, Zhou X, Amonette JE, Zhang ZC. Appl Catal A-Gen, 2009, 361: 117–122CrossRefGoogle Scholar
  128. 128.
    Shuai L, Luterbacher J. ChemSusChem, 2016, 9: 133–155CrossRefGoogle Scholar
  129. 129.
    Simeonov SP, Coelho JAS, Afonso CAM. ChemSusChem, 2012, 5: 1388–1391CrossRefGoogle Scholar
  130. 130.
    Alonso DM, Wettstein SG, Dumesic JA. Green Chem, 2013, 15: 584–595CrossRefGoogle Scholar
  131. 131.
    Azadi P, Carrasquillo-Flores R, Pagán-Torres YJ, Gürbüz EI, Farnood R, Dumesic JA. Green Chem, 2012, 14: 1573–1576CrossRefGoogle Scholar
  132. 132.
    Alonso DM, Wettstein SG, Bond JQ, Root TW, Dumesic JA. ChemSusChem, 2011, 4: 1078–1081CrossRefGoogle Scholar
  133. 133.
    Román-Leshkov Y, Chheda JN, Dumesic JA. Science, 2006, 312: 1933–1937CrossRefGoogle Scholar
  134. 134.
    Wrigstedt P, Keskiväli J, Repo T. RSC Adv, 2016, 6: 18973–18979CrossRefGoogle Scholar
  135. 135.
    Mohammad S, Held C, Altuntepe E, Köse T, Sadowski G. J Phys Chem B, 2016, 120: 3797–3808CrossRefGoogle Scholar
  136. 136.
    Mohammad S, Held C, Altuntepe E, Köse T, Gerlach T, Smirnova I, Sadowski G. Fluid Phase Equilibr, 2016, 416: 83–93CrossRefGoogle Scholar
  137. 137.
    Wrigstedt P, Keskiväli J, Leskelä M, Repo T. ChemCatChem, 2015, 7: 501–507CrossRefGoogle Scholar
  138. 138.
    Teong SP, Yi G, Zeng H, Zhang Y. Green Chem, 2015, 17: 3751–3755CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory for Advanced Materials, Research Institute of Industrial CatalysisEast China University of Science and TechnologyShanghaiChina
  2. 2.Division of Physical Sciences and EngineeringKing Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations