Skip to main content
Log in

Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Surface wettability is important to design biointerfaces and functional biomaterials in various biological applications. However, to date, it remains some confusions about how cells would response to the surfaces with different wettabilities. Herein, we systematically explore the adhesive spectra of cells to the surface with wettability gradient from superhydrophilicity to superhydrophobicity, clarifying the effect of wettability on cell adhesion. We envision that this study may provide valuable information for the design of biomedical implants with controllable cell adhesion, such as neural interface devices and flexible implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang S, Liu K, Yao X, Jiang L. Chem Rev, 2015, 115: 8230–8293

    Article  CAS  Google Scholar 

  2. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG. Nat Mater, 2010, 9: 768–778

    Article  CAS  Google Scholar 

  3. Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials Science: An Introduction to Materials in Medicine. Place Published: Academic Press, 2004

    Google Scholar 

  4. Liu X, Wang S. Chem Soc Rev, 2014, 43: 2385–2401

    Article  CAS  Google Scholar 

  5. Park JH, Wasilewski CE, Almodovar N, Olivares-Navarrete R, Boyan BD, Tannenbaum R, Schwartz Z. Biomaterials, 2012, 33: 7386–7393

    Article  CAS  Google Scholar 

  6. Place ES, Evans ND, Stevens MM. Nat Mater, 2009, 8: 457–470

    Article  CAS  Google Scholar 

  7. Tee BCK, Chortos A, Berndt A, Nguyen AK, Tom A, McGuire A, Lin ZC, Tien K, Bae WG, Wang H, Mei P, Chou HH, Cui B, Deisseroth K, Ng TN, Bao Z. Science, 2015, 350: 313–316

    Article  CAS  Google Scholar 

  8. Park SI, Brenner DS, Shin G, Morgan CD, Copits BA, Chung HU, Pullen MY, Noh KN, Davidson S, Oh SJ, Yoon J, Jang KI, Samineni VK, Norman M, Grajales-Reyes JG, Vogt SK, Sundaram SS, Wilson KM, Ha JS, Xu R, Pan T, Kim TI, Huang Y, Montana MC, Golden JP, Bruchas MR, Gereau RW, Rogers JA. Nat Biotechnol, 2015, 33: 1280–1286

    Article  CAS  Google Scholar 

  9. Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat Mater, 2010, 9: 101–113

    Article  Google Scholar 

  10. Leal-Egaña A, Díaz-Cuenca A, Boccaccini AR. Adv Mater, 2013, 25: 4049–4057

    Article  Google Scholar 

  11. Xie C, Liu J, Fu TM, Dai X, Zhou W, Lieber CM. Nat Mater, 2015, 14: 1286–1292

    Article  CAS  Google Scholar 

  12. Geyer FL, Ueda E, Liebel U, Grau N, Levkin PA. Angew Chem Int Ed, 2011, 50: 8424–8427

    Article  CAS  Google Scholar 

  13. Song Y, Zhang Y, Bernard PE, Reuben JM, Ueno NT, Arlinghaus RB, Zu Y, Qin L. Nat Commun, 2012, 3: 1283

    Article  Google Scholar 

  14. Maldonado-Codina C, Morgan PB. J Biomed Mater Res, 2007, 83A: 496–502

    Article  CAS  Google Scholar 

  15. Campbell D, Carnell SM, Eden RJ. Eye Contact Lens, 2013, 39: 254–262

    Article  Google Scholar 

  16. Kim W, Ng JK, Kunitake ME, Conklin BR, Yang P. J Am Chem Soc, 2007, 129: 7228–7229

    Article  CAS  Google Scholar 

  17. Wu J, Mao Z, Gao C. Biomaterials, 2011, 33: 810–820

    Google Scholar 

  18. Han L, Mao Z, Wu J, Guo Y, Ren T, Gao C. Biomaterials, 2013, 34: 975–984

    Article  CAS  Google Scholar 

  19. Ren T, Mao Z, Guo J, Gao C. Langmuir, 2013, 29: 6386–6395

    Article  CAS  Google Scholar 

  20. Lafuma A, Quéré D. Nat Mater, 2003, 2: 457–460

    Article  CAS  Google Scholar 

  21. Ishizaki T, Saito N, Takai O. Langmuir, 2010, 26: 8147–8154

    Article  CAS  Google Scholar 

  22. Toes GJ, van Muiswinkel KW, van Oeveren W, Suurmeijer AJH, Timens W, Stokroos I, van den Dungen JJAM. Biomaterials, 2002, 23: 255–262

    Article  CAS  Google Scholar 

  23. Piret G, Galopin E, Coffinier Y, Boukherroub R, Legrand D, Slomianny C. Soft Matter, 2011, 7: 8642–8649

    Article  CAS  Google Scholar 

  24. Cha KJ, Park KS, Kang SW, Cha BH, Lee BK, Han IB, Shin DA, Kim DS, Lee SH. Macromol Biosci, 2011, 11: 1357–1363

    Article  CAS  Google Scholar 

  25. Yang G, Cao Y, Fan J, Liu H, Zhang F, Zhang P, Huang C, Jiang L, Wang S. Angew Chem, 2014, 126: 2959–2962

    Article  Google Scholar 

  26. Deng X, Mammen L, Butt HJ, Vollmer D. Science, 2012, 335: 67–70

    Article  CAS  Google Scholar 

  27. Manifar T, Rezaee A, Sheikhzadeh M, Mittler S. Appl Surface Sci, 2008, 254: 4611–4619

    Article  CAS  Google Scholar 

  28. Chaudhury MK, Whitesides GM. Science, 1992, 256: 1539–1541

    Article  CAS  Google Scholar 

  29. Wang S, Jiang L. Adv Mater, 2007, 19: 3423–3424

    Article  CAS  Google Scholar 

  30. Feng L, Zhang Y, Xi J, Zhu Y, Wang N, Xia F, Jiang L. Langmuir, 2008, 24: 4114–4119

    Article  CAS  Google Scholar 

  31. Jin M, Feng X, Feng L, Sun T, Zhai J, Li T, Jiang L. Adv Mater, 2005, 17: 1977–1981

    Article  CAS  Google Scholar 

  32. Luo C, Zheng H, Wang L, Fang H, Hu J, Fan C, Cao Y, Wang J. Angew Chim Int Ed, 2010, 49: 9145–9148

    Article  CAS  Google Scholar 

  33. Poetes R, Holtzmann K, Franze K, Steiner U. Phys Rev Lett, 2010, 105: 166104

    Article  Google Scholar 

  34. Lampin M, Warocquier-Clérout R, Legris C, Degrange M, Sigot-Luizard MF. J Biomed Mater Res, 1997, 36: 99–108

    Article  CAS  Google Scholar 

  35. Faucheux N, Schweiss R, Lützow K, Werner C, Groth T. Biomaterials, 2004, 25: 2721–2730

    Article  CAS  Google Scholar 

  36. Rupp F, Gittens RA, Scheideler L, Marmur A, Boyan BD, Schwartz Z, Geis-Gerstorfer J. Acta Biomater, 2014, 10: 2894–2906

    Article  CAS  Google Scholar 

  37. Gittens RA, Scheideler L, Rupp F, Hyzy SL, Geis-Gerstorfer J, Schwartz Z, Boyan BD. Acta Biomater, 2014, 10: 2907–2918

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21425314, 21501184, 21434009, 21421061, 21504098), the Key Research Program of the Chinese Academy of Sciences (KJZD-EW-M01), Ministry of Science and Technology (2013YQ190467), the Top-Notch Young Talents Program of China, and Beijing Municipal Science & Technology Commission (Z161100000116037).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shutao Wang.

Additional information

Theses authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Yang, G., Liu, L. et al. Cell adhesive spectra along surface wettability gradient from superhydrophilicity to superhydrophobicity. Sci. China Chem. 60, 614–620 (2017). https://doi.org/10.1007/s11426-016-9031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9031-8

Keywords

Navigation