Skip to main content
Log in

Graphene nanopores toward DNA sequencing: a review of experimental aspects

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Nanopores for DNA sequencing have drawn much attention due to their potentials to achieve amplification-free, low-cost, and high-throughput analysis of nuclei acids. The material configuration and fabrication of the nanopore has become one important consideration in the nanopore based DNA sequencing research. Among various materials, the newly emerged graphene has brought more opportunities to the development of sequencing technology because of its unique structures and properties. This review mainly focuses on the experimental aspects of graphene nanopore research including the nanopore fabrication methods and processes. Meanwhile, the challenges in the present graphene nanopore research including hydrophobicity, translocation velocity and noise are also addressed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Heerema SJ, Dekker C. Nat Nanotech, 2016, 11: 127–136

    Article  CAS  Google Scholar 

  2. Venkatesan BM, Bashir R. Nat Nanotech, 2011, 6: 615–624

    Article  CAS  Google Scholar 

  3. Feng Y, Zhang Y, Ying C, Wang D, Du C. Geno Prot Bioinfo, 2015, 13: 4–16

    Article  Google Scholar 

  4. Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Proc Natl Acad Sci USA, 1996, 93: 13770–13773

    Article  CAS  Google Scholar 

  5. Stefureac R, Long YT, Kraatz HB, Howard P, Lee JS. Biochemistry, 2006, 45: 9172–9179

    Article  CAS  Google Scholar 

  6. Manrao EA, Derrington IM, Laszlo AH, Langford KW, Hopper MK, Gillgren N, Pavlenok M, Niederweis M, Gundlach JH. Nat Biotechnol, 2012, 30: 349–353

    Article  CAS  Google Scholar 

  7. Soskine M, Biesemans A, Moeyaert B, Cheley S, Bayley H, Maglia G. Nano Lett, 2012, 12: 4895–4900

    Article  CAS  Google Scholar 

  8. Mohammad MM, Iyer R, Howard KR, McPike MP, Borer PN, Movileanu L. J Am Chem Soc, 2012, 134: 9521–9531

    Article  CAS  Google Scholar 

  9. Wendell D, Jing P, Geng J, Subramaniam V, Lee TJ, Montemagno C, Guo P. Nat Nanotech, 2009, 4: 765–772

    Article  CAS  Google Scholar 

  10. Wang HY, Li Y, Qin LX, Heyman A, Shoseyov O, Willner I, Long YT, Tian H. Chem Commun, 2013, 49: 1741–1743

    Article  CAS  Google Scholar 

  11. Healy K, Schiedt B, Morrison AP. Nanomedicine, 2007, 2: 875–897

    Article  CAS  Google Scholar 

  12. Li J, Gershow M, Stein D, Brandin E, Golovchenko JA. Nat Mater, 2003, 2: 611–615

    Article  CAS  Google Scholar 

  13. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C. Nat Mater, 2003, 2: 537–540

    Article  CAS  Google Scholar 

  14. Venkatesan BM, Dorvel B, Yemenicioglu S, Watkins N, Petrov I, Bashir R. Adv Mater, 2009, 21: 2771–2776

    Article  CAS  Google Scholar 

  15. Li J, Stein D, McMullan C, Branton D, Aziz MJ, Golovchenko JA. Nature, 2001, 412: 166–169

    Article  CAS  Google Scholar 

  16. Gierak J, Madouri A, Biance AL, Bourhis E, Patriarche G, Ulysse C, Lucot D, Lafosse X, Auvray L, Bruchhaus L, Jede R. Microelectron Eng, 2007, 84: 779–783

    Article  CAS  Google Scholar 

  17. Nilsson J, Lee JRI, Ratto TV, Létant SE. Adv Mater, 2006, 18: 427–431

    Article  CAS  Google Scholar 

  18. Zhang J, You L, Ye H, Yu D. Nanotechnology, 2007, 18: 155303

    Article  CAS  Google Scholar 

  19. Knez M, Nielsch K, Niinistö L. Adv Mater, 2007, 19: 3425–3438

    Article  CAS  Google Scholar 

  20. Comer J, Aksimentiev A. Nanoscale, 2016, 8: 9600–9613

    Article  CAS  Google Scholar 

  21. Park HJ, Ryu GH, Lee Z. Appl Microsc, 2015, 45: 107–114

    Article  Google Scholar 

  22. Garaj S, Hubbard W, Reina A, Kong J, Branton D, Golovchenko JA. Nature, 2010, 467: 190–193

    Article  CAS  Google Scholar 

  23. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndić M. Nano Lett, 2010, 10: 2915–2921

    Article  CAS  Google Scholar 

  24. Schneider GF, Kowalczyk SW, Calado VE, Pandraud G, Zandbergen HW, Vandersypen LMK, Dekker C. Nano Lett, 2010, 10: 3163–3167

    Article  CAS  Google Scholar 

  25. Cai Q, Ledden B, Krueger E, Golovchenko JA, Li J. J Appl Phys, 2006, 100: 024914

    Article  CAS  Google Scholar 

  26. Bacri L, Oukhaled AG, Schiedt B, Patriarche G, Bourhis E, Gierak J, Pelta J, Auvray L. J Phys Chem B, 2011, 115: 2890–2898

    Article  CAS  Google Scholar 

  27. Deng T, Li M, Wang Y, Liu Z. Sci Bull, 2015, 60: 304–319

    Article  CAS  Google Scholar 

  28. Hlawacek G, Veligura V, van Gastel R, Poelsema B. J Vac Sci Technol B, 2014, 32: 020801

    Article  CAS  Google Scholar 

  29. Kwok H, Waugh M, Bustamante J, Briggs K, Tabard-Cossa V. Adv Funct Mater, 2014, 24: 7745–7753

    Article  CAS  Google Scholar 

  30. Tseng AA. Small, 2005, 1: 924–939

    Article  CAS  Google Scholar 

  31. Wang D, Harrer S, Luan B, Stolovitzky G, Peng H, Afzali-Ardakani A. Sci Rep, 2014, 4: 3985

    Article  CAS  Google Scholar 

  32. Bai J, Wang D, Nam SW, Peng H, Bruce R, Gignac L, Brink M, Kratschmer E, Rossnagel S, Waggoner P, Reuter K, Wang C, Astier Y, Balagurusamy V, Luan B, Kwark Y, Joseph E, Guillorn M, Polonsky S, Royyuru A, Papa Rao S, Stolovitzky G. Nanoscale, 2014, 6: 8900–8906

    Article  CAS  Google Scholar 

  33. Rollings RC, Kuan AT, Golovchenko JA. Nat Commun, 2016, 7: 11408

    Article  CAS  Google Scholar 

  34. Tapasztó L, Dobrik G, Lambin P, Biró LP. Nat Nanotech, 2008, 3: 397–401

    Article  CAS  Google Scholar 

  35. Miles BN, Ivanov AP, Wilson KA, Doğan F, Japrung D, Edel JB. Chem Soc Rev, 2013, 42: 15–28

    Article  CAS  Google Scholar 

  36. Park S, Ruoff RS. Nat Nanotech, 2009, 4: 217–224

    Article  CAS  Google Scholar 

  37. Fischbein MD, Drndić M. Appl Phys Lett, 2008, 93: 113107

    Article  CAS  Google Scholar 

  38. Heerema SJ, Schneider GF, Rozemuller M, Vicarelli L, Zandbergen HW, Dekker C. Nanotechnology, 2015, 26: 074001

    Article  CAS  Google Scholar 

  39. Schneider GF, Xu Q, Hage S, Luik S, Spoor JNH, Malladi S, Zandbergen H, Dekker C. Nat Commun, 2013, 4: 2619

    Google Scholar 

  40. Xu Q, Wu MY, Schneider GF, Houben L, Malladi SK, Dekker C, Yucelen E, Dunin-Borkowski RE, Zandbergen HW. ACS Nano, 2013, 7: 1566–1572

    Article  CAS  Google Scholar 

  41. Freedman KJ, Ahn CW, Kim MJ. ACS Nano, 2013, 7: 5008–5016

    Article  CAS  Google Scholar 

  42. Venkatesan BM, Estrada D, Banerjee S, Jin X, Dorgan VE, Bae MH, Aluru NR, Pop E, Bashir R. ACS Nano, 2012, 6: 441–450

    Article  CAS  Google Scholar 

  43. Xu T, Yin K, Xie X, He L, Wang B, Sun L. Small, 2012, 8: 3422–3426

    Article  CAS  Google Scholar 

  44. Song B, Schneider GF, Xu Q, Pandraud G, Dekker C, Zandbergen H. Nano Lett, 2011, 11: 2247–2250

    Article  CAS  Google Scholar 

  45. Girit CO, Meyer JC, Erni R, Rossell MD, Kisielowski C, Yang L, Park CH, Crommie MF, Cohen ML, Louie SG, Zettl A. Science, 2009, 323: 1705–1708

    Article  CAS  Google Scholar 

  46. Barreiro A, Boerrnert F, Avdoshenko SM, Rellinghaus B, Cuniberti G, Ruemmeli MH, Vandersypen LMK. Sci Rep, 2013, 3: 1115

    Article  CAS  Google Scholar 

  47. Lu N, Wang J, Floresca HC, Kim MJ. Carbon, 2012, 50: 2961–2965

    Article  CAS  Google Scholar 

  48. Kotakoski J, Krasheninnikov AV, Nordlund K. Jnl Comp Theo Nano, 2007, 4: 1153–1159

    Article  CAS  Google Scholar 

  49. Ataca C, Ciraci S. Phys Rev B, 2011, 83: 235417

    Article  CAS  Google Scholar 

  50. Tsetseris L, Pantelides ST. Carbon, 2009, 47: 901–908

    Article  CAS  Google Scholar 

  51. Kwok H, Briggs K, Tabard-Cossa V. PLoS ONE, 2014, 9: e92880

    Article  CAS  Google Scholar 

  52. Briggs K, Kwok H, Tabard-Cossa V. Small, 2014, 10: 2077–2086

    Article  CAS  Google Scholar 

  53. Briggs K, Charron M, Kwok H, Le T, Chahal S, Bustamante J, Waugh M, Tabard-Cossa V. Nanotechnology, 2015, 26: 084004

    Article  CAS  Google Scholar 

  54. Tahvildari R, Beamish E, Tabard-Cossa V, Godin M. Lab Chip, 2015, 15: 1407–1411

    Article  CAS  Google Scholar 

  55. Ying C, Zhang Y, Feng Y, Zhou D, Wang D, Xiang Y, Zhou W, Chen Y, Du C, Tian J. Appl Phys Lett, 2016, 109: 063105

    Article  CAS  Google Scholar 

  56. Zhang Y, Chen Y, Fu Y, Ying C, Feng Y, Huang Q, Wang C, Pei DS, Wang D. Sci Rep, 2016, 6: 27959

    Article  CAS  Google Scholar 

  57. Kuan AT, Lu B, Xie P, Szalay T, Golovchenko JA. Appl Phys Lett, 2015, 106: 203109

    Article  CAS  Google Scholar 

  58. Crick CR, Sze JYY, Rosillo-Lopez M, Salzmann CG, Edel JB. ACS Appl Mater Interfaces, 2015, 7: 18188–18194

    Article  CAS  Google Scholar 

  59. Bell DC, Lemme MC, Stern LA, Williams JR, Marcus CM. Nanotechnology, 2009, 20: 455301

    Article  CAS  Google Scholar 

  60. Yang J, Ferranti DC, Stern LA, Sanford CA, Huang J, Ren Z, Qin LC, Hall AR. Nanotechnology, 2011, 22: 285310

    Article  CAS  Google Scholar 

  61. Galla L, Meyer AJ, Spiering A, Sischka A, Mayer M, Hall AR, Reimann P, Anselmetti D. Nano Lett, 2014, 14: 4176–4182

    Article  CAS  Google Scholar 

  62. Sischka A, Galla L, Meyer AJ, Spiering A, Knust S, Mayer M, Hall AR, Beyer A, Reimann P, Gölzhäuser A, Anselmetti D. Analyst, 2015, 140: 4843–4847

    Article  CAS  Google Scholar 

  63. Zahid OK, Zhao BS, He C, Hall AR. Sci Rep, 2016, 6: 29565

    Article  Google Scholar 

  64. Carlsen AT, Zahid OK, Ruzicka JA, Taylor EW, Hall AR. Nano Lett, 2014, 14: 5488–5492

    Article  CAS  Google Scholar 

  65. Zahid OK, Wang F, Ruzicka JA, Taylor EW, Hall AR. Nano Lett, 2016, 16: 2033–2039

    Article  CAS  Google Scholar 

  66. Lemme MC, Bell DC, Williams JR, Stern LA, Baugher BWH, Jarillo-Herrero P, Marcus CM. ACS Nano, 2009, 3: 2674–2676

    Article  CAS  Google Scholar 

  67. Kalhor N, Boden SA, Mizuta H. Microelectron Eng, 2014, 114: 70–77

    Article  CAS  Google Scholar 

  68. Abbas AN, Liu G, Liu B, Zhang L, Liu H, Ohlberg D, Wu W, Zhou C. ACS Nano, 2014, 8: 1538–1546

    Article  CAS  Google Scholar 

  69. Iberi V, Vlassiouk I, Zhang XG, Matola B, Linn A, Joy DC, Rondinone AJ. Sci Rep, 2015, 5: 11952

    Article  Google Scholar 

  70. Archanjo BS, Fragneaud B, Gustavo Cançado L, Winston D, Miao F, Alberto Achete C, Medeiros-Ribeiro G. Appl Phys Lett, 2014, 104: 193114

    Article  CAS  Google Scholar 

  71. Hemamouche A, Morin A, Bourhis E, Toury B, Tarnaud E, Mathé J, Guégan P, Madouri A, Lafosse X, Ulysse C, Guilet S, Patriarche G, Auvray L, Montel F, Wilmart Q, Plaçais B, Yates J, Gierak J. Microelectron Eng, 2014, 121: 87–91

    Article  CAS  Google Scholar 

  72. Russo CJ, Golovchenko JA. Proc Natl Acad Sci USA, 2012, 109: 5953–5957

    Article  CAS  Google Scholar 

  73. Wang H, Kurata K, Fukunaga T, Takamatsu H, Zhang X, Ikuta T, Takahashi K, Nishiyama T, Ago H, Takata Y. Carbon, 2016, 99: 564–570

    Article  CAS  Google Scholar 

  74. Zan R, Bangert U, Ramasse Q, Novoselov KS. J Phys Chem Lett, 2012, 3: 953–958

    Article  CAS  Google Scholar 

  75. Ramasse QM, Zan R, Bangert U, Boukhvalov DW, Son YW, Novoselov KS. ACS Nano, 2012, 6: 4063–4071

    Article  CAS  Google Scholar 

  76. Egerton RF, Li P, Malac M. Micron, 2004, 35: 399–409

    Article  CAS  Google Scholar 

  77. Meyer JC, Girit CO, Crommie MF, Zettl A. Appl Phys Lett, 2008, 92: 123110

    Article  CAS  Google Scholar 

  78. Lehtinen PO, Foster AS, Ayuela A, Krasheninnikov A, Nordlund K, Nieminen RM. Phys Rev Lett, 2003, 91: 017202

    Article  CAS  Google Scholar 

  79. Telling RH, Heggie MI. Philos Mag, 2007, 87: 4797–4846

    Article  CAS  Google Scholar 

  80. Banhart F. Nano Lett, 2001, 1: 329–332

    Article  CAS  Google Scholar 

  81. Hass J, Feng R, Li T, Li X, Zong Z, de Heer WA, First PN, Conrad EH, Jeffrey CA, Berger C. Appl Phys Lett, 2006, 89: 143106

    Article  CAS  Google Scholar 

  82. Yasuda A, Kawase N, Banhart F, Mizutani W, Shimizu T, Tokumoto H. J Phys Chem B, 2002, 106: 1849–1852

    Article  CAS  Google Scholar 

  83. Goyal G, Bok Lee Y, Darvish A, Ahn CW, Kim MJ. Nanotechnology, 2016, 27: 495301

    Article  Google Scholar 

  84. Zan R, Ramasse QM, Bangert U, Novoselov KS. Nano Lett, 2012, 12: 3936–3940

    Article  CAS  Google Scholar 

  85. Zhao J, Deng Q, Bachmatiuk A, Sandeep G, Popov A, Eckert J, Rümmeli MH. Science, 2014, 343: 1228–1232

    Article  CAS  Google Scholar 

  86. Lee J, Yang Z, Zhou W, Pennycook SJ, Pantelides ST, Chisholm MF. Proc Natl Acad Sci USA, 2014, 111: 7522–7526

    Article  CAS  Google Scholar 

  87. Gogotsi Y, Libera JA, Kalashnikov N, Yoshimura M. Science, 2000, 290: 317–320

    Article  CAS  Google Scholar 

  88. Gogotsi Y, Dimovski S, Libera JA. Carbon, 2002, 40: 2263–2267

    Article  CAS  Google Scholar 

  89. He K, Robertson AW, Gong C, Allen CS, Xu Q, Zandbergen H, Grossman JC, Kirkland AI, Warner JH. Nanoscale, 2015, 7: 11602–11610

    Article  CAS  Google Scholar 

  90. Carson S, Wanunu M. Nanotechnology, 2015, 26: 074004

    Article  CAS  Google Scholar 

  91. Postma HWC. Nano Lett, 2010, 10: 420–425

    Article  CAS  Google Scholar 

  92. Prasongkit J, Grigoriev A, Pathak B, Ahuja R, Scheicher RH. Nano Lett, 2011, 11: 1941–1945

    Article  CAS  Google Scholar 

  93. Hall JE. J Gen Physiol, 1975, 66: 531–532

    Article  CAS  Google Scholar 

  94. Garaj S, Liu S, Golovchenko JA, Branton D. Proc Natl Acad Sci USA, 2013, 110: 12192–12196

    Article  CAS  Google Scholar 

  95. Yan F, Zhang M, Li J. Adv Healthc Mater, 2014, 3: 313–331

    Article  CAS  Google Scholar 

  96. Puster M, Rodríguez-Manzo JA, Balan A, Drndić M. ACS Nano, 2013, 7: 11283–11289

    Article  CAS  Google Scholar 

  97. Min SK, Kim WY, Cho Y, Kim KS. Nat Nanotech, 2011, 6: 162–165

    Article  CAS  Google Scholar 

  98. Saha KK, Drndić M, Nikolić BK. Nano Lett, 2012, 12: 50–55

    Article  CAS  Google Scholar 

  99. Traversi F, Raillon C, Benameur SM, Liu K, Khlybov S, Tosun M, Krasnozhon D, Kis A, Radenovic A. Nat Nanotech, 2013, 8: 939–945

    Article  CAS  Google Scholar 

  100. Harrell CC, Choi Y, Horne LP, Baker LA, Siwy ZS, Martin CR. Langmuir, 2006, 22: 10837–10843

    Article  CAS  Google Scholar 

  101. Iliafar S, Wagner K, Manohar S, Jagota A, Vezenov D. J Phys Chem C, 2012, 116: 13896–13903

    Article  CAS  Google Scholar 

  102. Yokota K, Tsutsui M, Taniguchi M. RSC Adv, 2014, 4: 15886–15899

    Article  CAS  Google Scholar 

  103. Smeets RMM, Keyser UF, Dekker NH, Dekker C. Proc Natl Acad Sci USA, 2008, 105: 417–421

    Article  CAS  Google Scholar 

  104. Tabard-Cossa V, Trivedi D, Wiggin M, Jetha NN, Marziali A. Nanotechnology, 2007, 18: 305505

    Article  CAS  Google Scholar 

  105. Kumar A, Park KB, Kim HM, Kim KB. Nanotechnology, 2013, 24: 495503

    Article  CAS  Google Scholar 

  106. Tsutsui M, Taniguchi M, Yokota K, Kawai T. Nat Nanotech, 2010, 5: 286–290

    Article  CAS  Google Scholar 

  107. Shankla M, Aksimentiev A. Nat Commun, 2014, 5: 5171

    Article  CAS  Google Scholar 

  108. Liang L, Zhang Z, Shen J, Zhe K, Wang Q, Wu T, Ågren H, Tu Y. RSC Adv, 2014, 4: 50494–50502

    Article  CAS  Google Scholar 

  109. Liang L, Cui P, Wang Q, Wu T, Ågren H, Tu Y. RSC Adv, 2013, 3: 2445–2453

    Article  CAS  Google Scholar 

  110. Lv W, Chen M, Wu R. Soft Matter, 2013, 9: 960–966

    Article  CAS  Google Scholar 

  111. Wells DB, Belkin M, Comer J, Aksimentiev A. Nano Lett, 2012, 12: 4117–4123

    Article  CAS  Google Scholar 

  112. Sathe C, Zou X, Leburton JP, Schulten K. ACS Nano, 2011, 5: 8842–8851

    Article  CAS  Google Scholar 

  113. Nelson T, Zhang B, Prezhdo OV. Nano Lett, 2010, 10: 3237–3242

    Article  CAS  Google Scholar 

  114. Li J, Zhang Y, Yang J, Bi K, Ni Z, Li D, Chen Y. Phys Rev E, 2013, 87: 062707

    Article  CAS  Google Scholar 

  115. Banerjee S, Wilson J, Shim J, Shankla M, Corbin EA, Aksimentiev A, Bashir R. Adv Funct Mater, 2015, 25: 936–946

    Article  CAS  Google Scholar 

  116. Shi C, Kong Z, Sun T, Liang L, Shen J, Zhao Z, Wang Q, Kang Z, Ågren H, Tu Y. RSC Adv, 2015, 5: 9389–9395

    Article  CAS  Google Scholar 

  117. Girdhar A, Sathe C, Schulten K, Leburton JP. Proc Natl Acad Sci USA, 2013, 110: 16748–16753

    Article  CAS  Google Scholar 

  118. He Y, Tsutsui M, Ryuzaki S, Yokota K, Taniguchi M, Kawai T. Npg Asia Mater, 2014, 6: e104

    Google Scholar 

  119. McFarland HL, Ahmed T, Zhu JX, Balatsky AV, Haraldsen JT. J Phys Chem Lett, 2015, 6: 2616–2621

    Article  CAS  Google Scholar 

  120. Avdoshenko SM, Nozaki D, Gomes da Rocha C, González JW, Lee MH, Gutierrez R, Cuniberti G. Nano Lett, 2013, 13: 1969–1976

    Article  CAS  Google Scholar 

  121. Kong Z, Zheng W, Wang Q, Wang H, Xi F, Liang L, Shen JW. J Mater Chem B, 2015, 3: 4814–4820

    Article  CAS  Google Scholar 

  122. Kundu S, Karmakar SN. Nanotechnology, 2016, 27: 135101

    Article  CAS  Google Scholar 

  123. Qiu H, Girdhar A, Schulten K, Leburton JP. ACS Nano, 2016, 10: 4482–4488

    Article  CAS  Google Scholar 

  124. Fotouhi B, Ahmadi V, Abasifard M, Roohi R. J Phys Chem C, 2016, 120: 13693–13700

    Article  CAS  Google Scholar 

  125. Kulkarni M, Mukherjee A. RSC Adv, 2016, 6: 46019–46029

    Article  CAS  Google Scholar 

  126. Wen C, Zeng S, Zhang Z, Hjort K, Scheicher R, Zhang SL. Nanotechnology, 2016, 27: 215502

    Article  CAS  Google Scholar 

  127. Al-Dirini F, Mohammed MA, Hossain MS, Hossain FM, Nirmalathas A, Skafidas E. Nanoscale, 2016, 8: 10066–10077

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (81471697), the Key Technology R&D Program of Hubei Province (2014BBB003), Yellow Crane Talent (Science & Technology) Program of Wuhan City and Applied Basic Research Program of Wuhan City (2016060101010044, 2016060101010048), and the Fundamental Research Funds for the Central Universities (2016YXMS253). We also thank the Analytical and Testing Center (HUST) for the help of measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Di Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Liu, GC., Ouyang, J. et al. Graphene nanopores toward DNA sequencing: a review of experimental aspects. Sci. China Chem. 60, 721–729 (2017). https://doi.org/10.1007/s11426-016-9016-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9016-5

Keywords

Navigation