Real-time detection of Cu(II) with PEDOT:PSS based organic electrochemical transistors


Copper is an essential element in the environment and the human body, but at the same time, exposure to high concentrations of Cu2+ ions will potentially lead to acute toxicity and various neurodegenerative diseases. Thus, it is of great significance for the development of highly sensitive and selective strategies for the detection of Cu2+ ions. Here, we report a highly efficient poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS) based organic electrochemical transistor (OECT) sensor, for real-time Cu2+ ions detection. The detection limit of the OECT device is as low as 100 nM, far beyond the sensitivity required for practical uses. The detection mechanism may base on the chemical reactivity of Cu2+ ions oxiding the PEDOT:PSS in solution both in absence and presence of the base potential. The OECT devices also exhibit excellent selective response to Cu2+ ions rather than other metal ions. Finally, we also demonstrate the determination of Cu2+ ions in tap water with the OECT Cu2+ sensor. Considering the high sensitivity and selectivity, as well as the real-time and low cost features of our Cu2+ OECT sensor, it is ideal for portable and disposable applications for environment monitoring and public health.

This is a preview of subscription content, access via your institution.


  1. 1

    Fraga CG. Mol Aspects Med, 2005, 26: 235–244

    CAS  Article  Google Scholar 

  2. 2

    Kanumakala S, Boneh A, Zacharin M. J Inherit Metab Dis, 2002, 25: 391–398

    CAS  Article  Google Scholar 

  3. 3

    Uriu-Adams JY, Keen CL. Mol Aspects Med, 2005, 26: 268–298

    CAS  Article  Google Scholar 

  4. 4

    Schaefer M, Schellenberg M, Merle U, Weiss KH, Stremmel W. BMC Gastroenterol, 2008, 8: 29

    Article  Google Scholar 

  5. 5

    Drew SC, Barnham KJ. Acc Chem Res, 2011, 44: 1146–1155

    CAS  Article  Google Scholar 

  6. 6

    Mohd-Taufek N, Cartwright D, Davies M, Hewavitharana AK, Koorts P, Shaw PN, Sumner R, Lee E, Whitfield K. Food Anal Methods, 2016, 9: 2068–2075

    Article  Google Scholar 

  7. 7

    Mendil D, Karatas M, Tuzen M. Food Chem, 2015, 177: 320–324

    CAS  Article  Google Scholar 

  8. 8

    Chen YZ, Jiang HL. Chem Mater, 2016, 28: 6698–6704

    CAS  Article  Google Scholar 

  9. 9

    Ocypa M, Michalska A, Maksymiuk K. Electrochim Acta, 2006, 51: 2298–2305

    CAS  Article  Google Scholar 

  10. 10

    Lin M, Cho MS, Choe WS, Son Y, Lee Y. Electrochim Acta, 2009, 54: 7012–7017

    CAS  Article  Google Scholar 

  11. 11

    Gao W, Nyein HYY, Shahpar Z, Fahad HM, Chen K, Emaminejad S, Gao Y, Tai LC, Ota H, Wu E, Bullock J, Zeng Y, Lien DH, Javey A. ACS Sens, 2016, 1: 866–874

    CAS  Article  Google Scholar 

  12. 12

    Yan F, Tang H. Expert Rev Mol Diagn, 2010, 10: 547–549

    Article  Google Scholar 

  13. 13

    Tang H, Lin P, Chan HLW, Yan F. Biosens Bioelectron, 2011, 26: 4559–4563

    CAS  Article  Google Scholar 

  14. 14

    Liao C, Zhang M, Niu L, Zheng Z, Yan F. J Mater Chem B, 2014, 2: 191–200

    CAS  Article  Google Scholar 

  15. 15

    Liao C, Mak C, Zhang M, Chan HLW, Yan F. Adv Mater, 2015, 27: 676–681

    CAS  Article  Google Scholar 

  16. 16

    Liao J, Lin S, Yang Y, Liu K, Du W. Sensor Actuat B-Chem, 2015, 208: 457–463

    CAS  Article  Google Scholar 

  17. 17

    He RX, Zhang M, Tan F, Leung PHM, Zhao XZ, Chan HLW, Yang M, Yan F. J Mater Chem, 2012, 22: 22072–22076

    CAS  Article  Google Scholar 

  18. 18

    Lin P, Luo X, Hsing IM, Yan F. Adv Mater, 2011, 23: 4035–4040

    CAS  Article  Google Scholar 

  19. 19

    Lin P, Yan F, Yu J, Chan HLW, Yang M. Adv Mater, 2010, 22: 3655–3660

    CAS  Article  Google Scholar 

  20. 20

    Dabke RB, Singh GD, Dhanabalan A, Lal R, Contractor AQ. Anal Chem, 1997, 69: 724–727

    CAS  Article  Google Scholar 

  21. 21

    Mousavi Z, Ekholm A, Bobacka J, Ivaska A. Electroanalysis, 2009, 21: 472–479

    CAS  Article  Google Scholar 

  22. 22

    Wang Y, Zhou Z, Qing X, Zhong W, Liu Q, Wang W, Li M, Liu K, Wang D. Anal Bioanal Chem, 2016, 408: 5779–5787

    CAS  Article  Google Scholar 

  23. 23

    Bernards DA, Malliaras GG. Adv Funct Mater, 2007, 17: 3538–3544

    CAS  Article  Google Scholar 

  24. 24

    Lin P, Yan F, Chan HLW. ACS Appl Mater Interfaces, 2010, 2: 1637–1641

    CAS  Article  Google Scholar 

  25. 25

    Xia Y, Ouyang J. Org Electron, 2010, 11: 1129–1135

    CAS  Article  Google Scholar 

  26. 26

    Tian Y, Wang Y, Xu Y, Liu Y, Li D, Fan C. Sci China Chem, 2015, 58: 514–518

    CAS  Article  Google Scholar 

  27. 27

    Wang Y, Cui Y, Liu R, Gao F, Gao L, Gao X. Sci China Chem, 2015, 58: 819–824

    CAS  Article  Google Scholar 

  28. 28

    de Bethune AJ, Loud NAS, King CV. J Electrochem Soc, 1965, 112: 107C–108C

    Article  Google Scholar 

Download references


This work was supported by the Key Science & Technology Specific Projects of Anhui Province (15czz03117), the Funds for Huangshan Professorship of Hefei University of Technology (407-037019), Anhui Science and Technology Research Projects of China (1401b042018), and the Fundamental Research Funds for the Central Universities (JZ2017HGTB0195, JZ2016HGBZ1047).

Author information



Corresponding authors

Correspondence to Hao Qu or Lei Zheng.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Qu, H., Chen, W. et al. Real-time detection of Cu(II) with PEDOT:PSS based organic electrochemical transistors. Sci. China Chem. 60, 1205–1211 (2017).

Download citation


  • copper detection
  • organic electrochemical transistors
  • real-time
  • high sensitivity