Skip to main content
Log in

Recent progress of interconnecting layer for tandem organic solar cells

  • Reviews
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

This paper has reviewed: (1) the two unique advantages of tandem organic solar cells (OSCs) compared to single OSCs; (2) the challengings as well as strategies to develop qualified interconnecting layer (ICL) for tandem OSCs. More specifically, firstly, the two key advantages unique to tandem OSCs as compared to single OSCs, namely minimizing sub-bandgap transmission and thermalization loss as well as realizing optical thick and electrical thin structures, have been discussed. Secondly, the ICL, as one of the most challenging issue in tandem OSCs that needs to fulfill the optical, electrical and mechanical requirements simultaneously to realize a qualified ICL has been reviewed. As one of the most challenging requirement among the three, the electrical requirement and its corresponding three different solving strategies have been discussed in detail, revealing a bright future for developing a general strategy to realizing qualified ICL composed of different hole transporting layer (HTL) and electron transporting layer (ETL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams J, Spyropoulos GD, Salvador M, Li N, Strohm S, Lucera L, Langner S, Machui F, Zhang H, Ameri T, Voigt MM, Krebs FC, Brabec CJ. Energy Environ Sci, 2015, 8: 169–176

    Article  CAS  Google Scholar 

  2. Bailie CD, Christoforo MG, Mailoa JP, Bowring AR, Unger EL, Nguyen WH, Burschka J, Pellet N, Lee JZ, Grätzel M, Noufi R, Buonassisi T, Salleo A, McGehee MD. Energy Environ Sci, 2015, 8: 956–963

    Article  CAS  Google Scholar 

  3. Chou CH, Kwan WL, Hong Z, Chen LM, Yang Y. Adv Mater, 2011, 23: 1282–1286

    Article  CAS  Google Scholar 

  4. Li N, Baran D, Forberich K, Machui F, Ameri T, Turbiez M, Carrasco-Orozco M, Drees M, Facchetti A, Krebs FC, Brabec CJ. Energy Environ Sci, 2013, 6: 3407–3413

    Article  CAS  Google Scholar 

  5. You J, Chen CC, Hong Z, Yoshimura K, Ohya K, Xu R, Ye S, Gao J, Li G, Yang Y. Adv Mater, 2013, 25: 3973–3978

    Article  CAS  Google Scholar 

  6. Zhou Y, Fuentes-Hernandez C, Shim JW, Khan TM, Kippelen B. Energy Environ Sci, 2012, 5: 9827–9832

    Article  CAS  Google Scholar 

  7. De Vos A. J Phys D-Appl Phys, 1980, 13: 839–846

    Article  Google Scholar 

  8. Song L. Appl Phys A, 2016, 122: 930

    Article  Google Scholar 

  9. Ameri T, Li N, Brabec CJ. Energy Environ Sci, 2013, 6: 2390–2413

    Article  CAS  Google Scholar 

  10. Chen CP, Chen YD, Chuang SC. Adv Mater, 2011, 23: 3859–3863

    CAS  Google Scholar 

  11. Li H, Cao J, Zhou Q, Ding L, Wang J. Nano Energy, 2015, 15: 125–134

    Article  CAS  Google Scholar 

  12. Lu S, Guan X, Li X, Liu J, Huang F, Choy WCH. Nano Energy, 2016, 21: 123–132

    Article  CAS  Google Scholar 

  13. Wu Z, Sun C, Dong S, Jiang XF, Wu S, Wu H, Yip HL, Huang F, Cao Y. J Am Chem Soc, 2016, 138: 2004–2013

    Article  CAS  Google Scholar 

  14. Zhao W, Zhang S, Hou J. Sci China Chem, 2016, 59: 1574–1582

    Article  CAS  Google Scholar 

  15. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248–256

    Article  CAS  Google Scholar 

  16. Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192–209

    Article  CAS  Google Scholar 

  17. Zhang H, Yao H, Zhao W, Ye L, Hou J. Adv Energy Mater, 2016, 6: 1502177

    Article  Google Scholar 

  18. Chen CC, Chang WH, Yoshimura K, Ohya K, You J, Gao J, Hong Z, Yang Y. Adv Mater, 2014, 26: 5670–5677

    Article  CAS  Google Scholar 

  19. Jo J, Pouliot JR, Wynands D, Collins SD, Kim JY, Nguyen TL, Woo HY, Sun Y, Leclerc M, Heeger AJ. Adv Mater, 2013, 25: 4783–4788

    Article  CAS  Google Scholar 

  20. Sista S, Park MH, Hong Z, Wu Y, Hou J, Kwan WL, Li G, Yang Y. Adv Mater, 2010, 22: 380–383

    Article  CAS  Google Scholar 

  21. Yang J, Zhu R, Hong Z, He Y, Kumar A, Li Y, Yang Y. Adv Mater, 2011, 23: 3465–3470

    Article  CAS  Google Scholar 

  22. Sista S, Hong Z, Park MH, Xu Z, Yang Y. Adv Mater, 2010, 22: E77–E80

    Article  CAS  Google Scholar 

  23. Guo X, Liu F, Meng B, Xie Z, Wang L. Org Electron, 2010, 11: 1230–1233

    Article  CAS  Google Scholar 

  24. Zheng Z, Zhang S, Zhang J, Qin Y, Li W, Yu R, Wei Z, Hou J. Adv Mater, 2016, 28: 5133–5138

    Article  CAS  Google Scholar 

  25. Lin H, Chen S, Li Z, Lai JYL, Yang G, McAfee T, Jiang K, Li Y, Liu Y, Hu H, Zhao J, Ma W, Ade H, Yan H. Adv Mater, 2015, 27: 7299–7304

    Article  CAS  Google Scholar 

  26. Yao H, Yu R, Shin TJ, Zhang H, Zhang S, Jang B, Uddin MA, Woo HY, Hou J. Adv Energy Mater, 2016, 6: 1600742

    Article  Google Scholar 

  27. Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y. Adv Mater, 2015, 27: 2938–2944

    Article  CAS  Google Scholar 

  28. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. Nat Commun, 2013, 4: 1446

    Article  Google Scholar 

  29. Lu S, Guan X, Li X, Sha WEI, Xie F, Liu H, Wang J, Huang F, Choy WCH. Adv Energy Mater, 2015, 5: 1500631

    Article  Google Scholar 

  30. You J, Dou L, Hong Z, Li G, Yang Y. Prog Polymer Sci, 2013, 38: 1909–1928

    Article  CAS  Google Scholar 

  31. Ameri T, Dennler G, Lungenschmied C, Brabec CJ. Energy Environ Sci, 2009, 2: 347–363

    Article  CAS  Google Scholar 

  32. Shockley W, Queisser HJ. J Appl Phys, 1961, 32: 510–519

    Article  CAS  Google Scholar 

  33. Dang MT, Hirsch L, Wantz G. Adv Mater, 2011, 23: 3597–3602

    Article  CAS  Google Scholar 

  34. Lin YY, Wang DY, Yen HC, Chen HL, Chen CC, Chen CM, Tang CY, Chen CW. Nanotechnology, 2009, 20: 405207

    Article  Google Scholar 

  35. Zhokhavets U, Erb T, Gobsch G, Al-Ibrahim M, Ambacher O. Chem Phys Lett, 2006, 418: 347–350

    Article  CAS  Google Scholar 

  36. Hotta S, Rughooputh SDDV, Heeger AJ, Wudl F. Macromolecules, 1987, 20: 212–215

    Article  CAS  Google Scholar 

  37. Cook S, Furube A, Katoh R. Energy Environ Sci, 2008, 1: 294–299

    Article  CAS  Google Scholar 

  38. Grancini G, Polli D, Fazzi D, Cabanillas-Gonzalez J, Cerullo G, Lanzani G. J Phys Chem Lett, 2011, 2: 1099–1105

    Article  CAS  Google Scholar 

  39. Wu MC, Lin YY, Chen S, Liao HC, Wu YJ, Chen CW, Chen YF, Su WF. Chem Phys Lett, 2009, 468: 64–68

    Article  CAS  Google Scholar 

  40. Mor GK, Kim S, Paulose M, Varghese OK, Shankar K, Basham J, Grimes CA. Nano Lett, 2009, 9: 4250–4257

    Article  CAS  Google Scholar 

  41. Kim Y, Choulis SA, Nelson J, Bradley DDC, Cook S, Durrant JR. J Mater Sci, 2005, 40: 1371–1376

    Article  CAS  Google Scholar 

  42. Winokur MJ, Spiegel D, Kim Y, Hotta S, Heeger AJ. Synth Met, 1989, 28: 419–426

    Article  Google Scholar 

  43. Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y. Chem Phys Lett, 2005, 411: 138–143

    Article  CAS  Google Scholar 

  44. Li G, Shrotriya V, Huang J, Yao Y, Moriarty T, Emery K, Yang Y. Nat Mater, 2005, 4: 864–868

    Article  CAS  Google Scholar 

  45. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. Adv Funct Mater, 2007, 17: 1636–1644

    Article  Google Scholar 

  46. Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153–161

    Article  CAS  Google Scholar 

  47. Nunzi JM. C R Phys, 2002, 3: 523–542

    Article  CAS  Google Scholar 

  48. Mozer AJ, Sariciftci NS. C R Chim, 2006, 9: 568–577

    Article  CAS  Google Scholar 

  49. Clarke TM, Durrant JR. Chem Rev, 2010, 110: 6736–6767

    Article  CAS  Google Scholar 

  50. Scully SR, McGehee MD. J Appl Phys, 2006, 100: 034907

    Article  Google Scholar 

  51. Markov DE, Hummelen JC, Blom PWM, Sieval AB. Phys Rev B, 2005, 72: 045216

    Article  Google Scholar 

  52. Peumans P, Yakimov A, Forrest SR. J Appl Phys, 2003, 93: 3693–3723

    Article  CAS  Google Scholar 

  53. Wiesenhofer H, Beljonne D, Scholes GD, Hennebicq E, Brédas JL, Zojer E. Adv Funct Mater, 2005, 15: 155–160

    Article  CAS  Google Scholar 

  54. Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE. J Phys Chem B, 2004, 108: 1537–1543

    Article  CAS  Google Scholar 

  55. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwig P, de Leeuw DM. Nature, 1999, 401: 685–688

    Article  CAS  Google Scholar 

  56. Blom PWM, de Jong MJM, van Munster MG. Phys Rev B, 1997, 55: R656–R659

    Google Scholar 

  57. Karl N, Kraft KH, Marktanner J, Münch M, Schatz F, Stehle R, Uhde HM. J Vac Sci Technol A, 1999, 17: 2318–2328

    Article  CAS  Google Scholar 

  58. Pasveer WF, Cottaar J, Tanase C, Coehoorn R, Bobbert PA, Blom PWM, de Leeuw DM, Michels MAJ. Phys Rev Lett, 2005, 94: 206601

    Article  CAS  Google Scholar 

  59. Warta W, Karl N. Phys Rev B, 1985, 32: 1172–1182

    Article  CAS  Google Scholar 

  60. Craats AM, Warman JM. Adv Mater, 2001, 13: 130–133

    Article  Google Scholar 

  61. Goh C, Kline RJ, McGehee MD, Kadnikova EN, Fréchet JMJ. Appl Phys Lett, 2005, 86: 122110

    Article  Google Scholar 

  62. Rang Z, Haraldsson A, Kim DM, Ruden PP, Nathan MI, Chesterfield RJ, Frisbie CD. Appl Phys Lett, 2001, 79: 2731–2733

    Article  CAS  Google Scholar 

  63. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL. Chem Rev, 2007, 107: 926–952

    Article  CAS  Google Scholar 

  64. Sista S, Hong Z, Chen LM, Yang Y. Energy Environ Sci, 2011, 4: 1606–1620

    Article  CAS  Google Scholar 

  65. Liu Y, Chen CC, Hong Z, Gao J, Yang YM, Zhou H, Dou L, Li G, Yang Y. Sci Rep, 2013, 3: 3356

    Google Scholar 

  66. Gilot J, Wienk MM, Janssen RAJ. Appl Phys Lett, 2007, 90: 143512

    Article  Google Scholar 

  67. Olthof S, Timmreck R, Riede M, Leo K. Appl Phys Lett, 2012, 100: 113302

    Article  Google Scholar 

  68. Yakimov A, Forrest SR. Appl Phys Lett, 2002, 80: 1667–1669

    Article  CAS  Google Scholar 

  69. Zheng Z, Zhang S, Zhang M, Zhao K, Ye L, Chen Y, Yang B, Hou J. Adv Mater, 2015, 27: 1189–1194

    Article  CAS  Google Scholar 

  70. Zhang K, Gao K, Xia R, Wu Z, Sun C, Cao J, Qian L, Li W, Liu S, Huang F, Peng X, Ding L, Yip HL, Cao Y. Adv Mater, 2016, 28: 4817–4823

    Article  CAS  Google Scholar 

  71. Dudley JM, Taylor JR. Nat Photon, 2009, 3: 85–90

    Article  CAS  Google Scholar 

  72. Tung VC, Kim J, Cote LJ, Huang J. J Am Chem Soc, 2011, 133: 9262–9265

    Article  CAS  Google Scholar 

  73. Kim JY, Kim SH, Lee HH, Lee K, Ma W, Gong X, Heeger AJ. Adv Mater, 2006, 18: 572–576

    Article  CAS  Google Scholar 

  74. Zhang D, Choy WCH, Xie F, Li X. Org Electron, 2012, 13: 2042–2046

    Article  CAS  Google Scholar 

  75. Gilot J, Barbu I, Wienk MM, Janssen RAJ. Appl Phys Lett, 2007, 91: 113520

    Article  Google Scholar 

  76. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photon, 2012, 6: 593–597

    Article  CAS  Google Scholar 

  77. Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, Winget P, Papadopoulos T, Cheun H, Kim J, Fenoll M, Dindar A, Haske W, Najafabadi E, Khan TM, Sojoudi H, Barlow S, Graham S, Brédas JL, Marder SR, Kahn A, Kippelen B. Science, 2012, 336: 327–332

    Article  CAS  Google Scholar 

  78. Xie F, Choy WCH, Wang C, Li X, Zhang S, Hou J. Adv Mater, 2013, 25: 2051–2055

    Article  CAS  Google Scholar 

  79. Zilberberg K, Trost S, Schmidt H, Riedl T. Adv Energy Mater, 2011, 1: 377–381

    Article  CAS  Google Scholar 

  80. Li X, Xie F, Zhang S, Hou J, Choy WCH. Adv Funct Mater, 2014, 24: 7348–7356

    Article  CAS  Google Scholar 

  81. Hammond SR, Meyer J, Widjonarko NE, Ndione PF, Sigdel AK, Garcia A, Miedaner A, Lloyd MT, Kahn A, Ginley DS, Berry JJ, Olson DC. J Mater Chem, 2012, 22: 3249–3254

    Article  CAS  Google Scholar 

  82. Li X, Choy WCH, Xie F, Zhang S, Hou J. J Mater Chem A, 2013, 1: 6614–6621

    Article  CAS  Google Scholar 

  83. Lee YJ, Yi J, Gao GF, Koerner H, Park K, Wang J, Luo K, Vaia RA, Hsu JWP. Adv Energy Mater, 2012, 2: 1193–1197

    Article  CAS  Google Scholar 

  84. Murase S, Yang Y. Adv Mater, 2012, 24: 2459–2462

    Article  CAS  Google Scholar 

  85. Manders JR, Tsang SW, Hartel MJ, Lai TH, Chen S, Amb CM, Reynolds JR, So F. Adv Funct Mater, 2013, 23: 2993–3001

    Article  CAS  Google Scholar 

  86. Garcia A, Welch GC, Ratcliff EL, Ginley DS, Bazan GC, Olson DC. Adv Mater, 2012, 24: 5368–5373

    Article  CAS  Google Scholar 

  87. Kim KH, Takahashi C, Okubo T, Abe Y, Kawamura M. Appl Surf Sci, 2012, 258: 7809–7812

    Article  CAS  Google Scholar 

  88. Huang Z, Natu G, Ji Z, He M, Yu M, Wu Y. J Phys Chem C, 2012, 116: 26239–26246

    Article  CAS  Google Scholar 

  89. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR. Adv Mater, 2000, 12: 481–494

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the General Research Fund (HKU711813), the Collaborative Research Fund (C7045-14E) from the Research Grants Council of Hong Kong Special Administrative Region, China, the Environment and Conservation Found Project (33/2015) from Environment and Conservation Fund, and the CAS-Croucher Funding Scheme for Joint Laboratories (CAS14601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wallace C. H. Choy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Ouyang, D. & Choy, W.C.H. Recent progress of interconnecting layer for tandem organic solar cells. Sci. China Chem. 60, 460–471 (2017). https://doi.org/10.1007/s11426-016-9008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9008-1

Keywords

Navigation