Skip to main content
Log in

High resolution scanning optical imaging of a frozen planar polymer light-emitting electrochemical cell: an experimental and modelling study

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Light-emitting electrochemical cells (LECs) are organic photonic devices based on a mixed electronic and ionic conductor. The active layer of a polymer-based LEC consists of a luminescent polymer, an ion-solvating/transport polymer, and a compatible salt. The LEC p-n or p-i-n junction is ultimately responsible for the LEC performance. The LEC junction, however, is still poorly understood due to the difficulties of characterizing a dynamic-junction LEC. In this paper, we present an experimental and modeling study of the LEC junction using scanning optical imaging techniques. Planar LECs with an interelectrode spacing of 560 μm have been fabricated, activated, frozen and scanned using a focused laser beam. The optical-beam-induced-current (OBIC) and photoluminescence (PL) data have been recorded as a function of beam location. The OBIC profile has been simulated in COMSOL that allowed for the determination of the doping concentration and the depletion width of the LEC junction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pei Q, Yu G, Zhang C, Yang Y, Heeger AJ. Science, 1995, 269: 1086–1088

    Article  CAS  Google Scholar 

  2. Pei Q, Yang Y, Yu G, Zhang C, Heeger AJ. J Am Chem Soc, 1996, 118: 3922–3929

    Article  CAS  Google Scholar 

  3. Matyba P, Maturova K, Kemerink M, Robinson ND, Edman L. Nat Mater, 2009, 8: 672–676

    Article  CAS  Google Scholar 

  4. Sun Q, Li Y, Pei Q. J Display Technol, 2007, 3: 211–224

    Article  CAS  Google Scholar 

  5. Xiong Y, Li L, Liang J, Gao H, Chou S, Pei Q. Mater Horiz, 2015, 2: 338–343

    Article  CAS  Google Scholar 

  6. Tang S, Edman L. Top Curr Chem, 2016, 374: 40

    Article  Google Scholar 

  7. Sun M, Zhong C, Yu Z, Cao Y, Pei Q. J Display Technol, 2013, 9: 476–482

    Article  CAS  Google Scholar 

  8. Sun M, Zhong C, Li F, Cao Y, Pei Q. Macromolecules, 2010, 43: 1714–1718

    Article  CAS  Google Scholar 

  9. Wu J, Li F, Zeng Q, Nie C, Ooi PC, Guo T, Shan G, Su Z. Org Electron, 2016, 28: 314–318

    Article  CAS  Google Scholar 

  10. Pertegás A, Wong MY, Sessolo M, Zysman-Colman E, Bolink HJ. ECS J Solid State Sci Technol, 2016, 5: R3160–R3163

    Google Scholar 

  11. Weber MD, Adam M, Tykwinski RR, Costa RD. Adv Funct Mater, 2015, 25: 5066–5074

    Article  CAS  Google Scholar 

  12. Tang S, Tan WY, Zhu XH, Edman L. Chem Commun, 2013, 49: 4926–4928

    Article  CAS  Google Scholar 

  13. Costa RD, Ortí E, Bolink HJ, Monti F, Accorsi G, Armaroli N. Angew Chem Int Ed, 2012, 51: 8178–8211

    Article  CAS  Google Scholar 

  14. Subeesh MS, Shanmugasundaram K, Sunesh CD, Won YS, Choe Y. J Mater Chem C, 2015, 3: 4683–4687

    Article  CAS  Google Scholar 

  15. Subeesh MS, Shanmugasundaram K, Sunesh CD, Chitumalla RK, Jang J, Choe Y. J Phys Chem C, 2016, 120: 12207–12217

    Article  CAS  Google Scholar 

  16. Weber MD, Nikolaou V, Wittmann JE, Nikolaou A, Angaridis PA, Charalambidis G, Stangel C, Kahnt A, Coutsolelos AG, Costa RD. Chem Commun, 2016, 52: 1602–1605

    Article  CAS  Google Scholar 

  17. Aygüler MF, Weber MD, Puscher BMD, Medina DD, Docampo P, Costa RD. J Phys Chem C, 2015, 119: 12047–12054

    Article  Google Scholar 

  18. Bideh BN, Roldán-Carmona C, Shahroosvand H, Nazeeruddin MK. J Mater Chem C, 2016, 4: 9674–9679

    Article  CAS  Google Scholar 

  19. Hu Y, Gao J. J Am Chem Soc, 2011, 133: 2227–2231

    Article  CAS  Google Scholar 

  20. Hohertz D, Gao J. Adv Mater, 2008, 20: 3298–3302

    Article  CAS  Google Scholar 

  21. Shin JH, Matyba P, Robinson ND, Edman L. Electrochim Acta, 2007, 52: 6456–6462

    Article  CAS  Google Scholar 

  22. Liu J, Engquist I, Crispin X, Berggren M. J Am Chem Soc, 2012, 134: 901–904

    Article  CAS  Google Scholar 

  23. Liu J, Engquist I, Berggren M. J Am Chem Soc, 2013, 135: 12224–12227

    Article  CAS  Google Scholar 

  24. Alem S, Gao J. Org Electron, 2008, 9: 347–354

    Article  CAS  Google Scholar 

  25. Shoji TD, Zhu ZH, Leger JM. ACS Appl Mater Interfaces, 2013, 5: 11509–11514

    Article  CAS  Google Scholar 

  26. Toshner SB, Zhu ZH, Kosilkin IV, Leger JM. ACS Appl Mater Interfaces, 2012, 4: 1149–1153

    Article  CAS  Google Scholar 

  27. Pingree LSC, Rodovsky DB, Coffey DC, Bartholomew GP, Ginger DS. J Am Chem Soc, 2007, 129: 15903–15910

    Article  CAS  Google Scholar 

  28. Rodovsky DB, Reid OG, Pingree LSC, Ginger DS. ACS Nano, 2010, 4: 2673–2680

    Article  CAS  Google Scholar 

  29. Slinker JD, DeFranco JA, Jaquith MJ, Silveira WR, Zhong YW, Moran-Mirabal JM, Craighead HG, Abruña HD, Marohn JA, Malliaras GG. Nat Mater, 2007, 6: 894–899

    Article  CAS  Google Scholar 

  30. Wilson T, Sheppard C. Theory and Practice of Scanning Optical Microscopy. London; Orlando: Academic Press, 1984

    Google Scholar 

  31. Raynaud C, Nguyen DM, Dheilly N, Tournier D, Brosselard P, Lazar M, Planson D. Phys Status Solidi A-Appl Mat, 2009, 206: 2273–2283

    Article  CAS  Google Scholar 

  32. Dick DJ, Heeger AJ, Yang Y, Pei Q. Adv Mater, 1996, 8: 985–987

    Article  CAS  Google Scholar 

  33. Hu Y, Dorin B, Teng F, Gao J. Org Electron, 2012, 13: 361–365

    Article  CAS  Google Scholar 

  34. Inayeh A, Dorin B, Gao J. Appl Phys Lett, 2012, 101: 253305

    Article  Google Scholar 

  35. AlTal F, Gao J. Phys Status Solidi RRL, 2015, 9: 77–81

    Article  CAS  Google Scholar 

  36. AlTal F, Gao J. J Appl Phys, 2016, 120: 115501

    Article  Google Scholar 

  37. Bozano L, Carter SA, Scott JC, Malliaras GG, Brock PJ. Appl Phys Lett, 1999, 74: 1132–1134

    Article  CAS  Google Scholar 

  38. Koynov K, Bahtiar A, Ahn T, Bubeck C, Hörhold HH. Appl Phys Lett, 2004, 84: 3792–3794

    Article  CAS  Google Scholar 

  39. Campbell IH, Hagler TW, Smith DL, Ferraris JP. Phys Rev Lett, 1996, 76: 1900–1903

    Article  CAS  Google Scholar 

  40. Sirimanne PM, Premalal EVA. Sri Lanka J Phys, 2007, 8: 29–37

    Google Scholar 

  41. Arkhipov VI, Heremans P, Emelianova EV, Adriaenssens GJ, Bässler H. Appl Phys Lett, 2003, 82: 3245–3247

    Article  CAS  Google Scholar 

  42. Dasgupta N, DasGupta A. Semiconductor Devices: Modelling and Technology. India: Prentice Hall, 2004

    Google Scholar 

  43. Braun CL. J Chem Phys, 1984, 80: 4157–4161

    Article  CAS  Google Scholar 

  44. Nishihara Y, Frankevich E, Fujii A, Ozaki M, Yoshino K. J Phys Soc Jpn, 2004, 73: 1888–1894

    Article  CAS  Google Scholar 

  45. Skrypnychuk V, Wetzelaer GJAH, Gordiichuk PI, Mannsfeld SCB, Herrmann A, Toney MF, Barbero DR. Adv Mater, 2016, 28: 2359–2366

    Article  CAS  Google Scholar 

  46. Arkhipov VI, Heremans P, Emelianova EV, Bässler H. Phys Rev B, 2005, 71: 045214

    Article  Google Scholar 

  47. Shin JH, Robinson ND, Xiao S, Edman L. Adv Funct Mater, 2007, 17: 1807–1813

    Article  CAS  Google Scholar 

  48. AlTal F, Gao J. Electrochim Acta, 2016, 220: 529–535

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada. Faleh AlTal is supported by an Ontario Trillium Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlTal, F., Gao, J. High resolution scanning optical imaging of a frozen planar polymer light-emitting electrochemical cell: an experimental and modelling study. Sci. China Chem. 60, 497–503 (2017). https://doi.org/10.1007/s11426-016-9005-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-9005-1

Keywords

Navigation