Skip to main content
Log in

The cytotoxicity of oxidized multi-walled carbon nanotubes on macrophages

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) have been developed for medical and biotechnological applications in the past decades. Their widespread applications make it important to understand their potential hazards to human and the environment. In this study, the possible toxicological effects of the oxidized multi-walled carbon nanotubes (O-MWCNTs) were assessed on RAW 264.7 macrophages in vitro. Several toxicological endpoints, such as cell viability, the release of LDH and IL-8, GSH/GSSG ratio, intracellular calcium concentration and ultrastructural changes in cell morphology, were carried out. The results showed that O-MWCNTs had very limited effects on oxidative stress, cellular toxicity and apoptosis. Transmission electron microscope clearly demonstrates RAW 264.7 macrophages engulfed plenty of O-MWCNTs, and some of them resided in the cytoplasm, while the morphology was not altered by O-MWCNTs. As the control, the pristine MWCNTs (p-MWCNTs) show higher cytotoxicity than O-MWCNTs, damaging cell viability and inducing cell apoptosis. All these toxicological data are of benefit to more wide applications of O-MWCNTs in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Battigelli A, Menard-Moyon C, Da Ros T, Prato M, Bianco A. Adv Drug Deliver Rev, 2013, 65: 1899–1920

    Article  CAS  Google Scholar 

  2. Li R, Wu R, Wu M, Zou H, Ma H, Yang L, Le XC. Electrophoresis, 2009, 30: 1906–1912

    Article  CAS  Google Scholar 

  3. Saito N, Haniu H, Usui Y, Aoki K, Hara K, Takanashi S, Shimizu M, Narita N, Okamoto M, Kobayashi S, Nomura H, Kato H, Nishimura N, Taruta S, Endo M. Chem Rev, 2014, 114: 6040–6079

    Article  CAS  Google Scholar 

  4. Yang ST, Wang H, Meziani MJ, Liu Y, Wang X, Sun YP. Biomacromolecules, 2009, 10: 2009–2012

    Article  CAS  Google Scholar 

  5. Yang ST, Luo JB, Zhou QH, Wang HF. Theranostics, 2012, 2: 271–282

    Article  CAS  Google Scholar 

  6. Nimmagadda A, Thurston K, Nollert MU, McFetridge PS. J Biomed Mater Res A, 2006, 76: 614–625

    Article  Google Scholar 

  7. Garibaldi S, Brunelli C, Bavastrello V, Ghigliotti G, Nicolini C. Nanotechnology, 2006, 17:391

    Article  CAS  Google Scholar 

  8. Cui D, Tian F, Ozkan CS, Wang M, Gao H. Toxicol Lett, 2005, 155: 73–85

    Article  CAS  Google Scholar 

  9. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao YL, Guo X. Environ Sci Technol, 2005, 39: 1378–1383

    Article  CAS  Google Scholar 

  10. Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson NL, Ramesh GT. J Nanosci Nanotechnol, 2007, 7: 2466–2472

    Article  CAS  Google Scholar 

  11. VanHandel M, Alizadeh D, Zhang L, Kateb B, Bronikowski M, Manohara H, Badie B. J Neuroimmunol, 2009, 208: 3–9

    Article  CAS  Google Scholar 

  12. Wirnitzer U, Herbold B, Voetz M, Ragot J. Toxicol Lett, 2009, 186: 160–165

    Article  CAS  Google Scholar 

  13. Dumortier H, Lacotte S, Pastorin G, Marega R, Wu W, Bonifazi D, Briand JP, Prato M, Muller S, Bianco A. Nano Lett, 2006, 6: 1522–1528

    Article  CAS  Google Scholar 

  14. Figarol A, Pourchez J, Boudard D, Forest V, Tulliani JM, Lecompte JP, Cottier M, Bernache-Assollant D, Grosseau P. J Nanopart Res, 2014, 16: 2507

    Article  Google Scholar 

  15. Yu GC, Li JY, Yu W, Han CY, Mao ZW, Gao CY, Huang FH. Adv Mater, 2013, 25: 6373–6379

    Article  CAS  Google Scholar 

  16. Abe S, Itoh S, Hayashi D, Kobayashi T, Kiba T, Akasaka T, Uo M, Yawaka Y, Ato SI, Watari F, Takada T. J Nanosci Nanotechnol, 2012, 12: 700–706

    Article  CAS  Google Scholar 

  17. Oberdörster G, Stone V, Donaldson K. Nanotoxicology, 2007, 1: 2–25

    Article  Google Scholar 

  18. Jones CF, Grainger DW. Adv Drug Deliver Rev, 2009, 61: 438–456

    Article  CAS  Google Scholar 

  19. Treumann S, Ma-Hock L, Groters S, Landsiedel R, van Ravenzwaay B. Toxicol Sci, 2013, 134: 103–110

    Article  CAS  Google Scholar 

  20. Luanpitpong S, Wang LY, Rojanasakul Y. Nanomedicine, 2014, 9: 895–912

    Article  CAS  Google Scholar 

  21. Deng X, Jia G, Wang H, Sun H, Wang X, Yang S, Wang T, Liu YF. Carbon, 2007, 45: 1419–1424

    Article  CAS  Google Scholar 

  22. Deng X, Wu F, Liu Z, Luo M, Li L, Ni Q, Jiao Z, Wu MH, Liu YF. Carbon, 2009, 47: 1421–1428

    Article  CAS  Google Scholar 

  23. Deng X, Yang S, Nie H, Wang H, Liu Y. Nanotechnology, 2008, 19: 075101

    Article  Google Scholar 

  24. Ji Z, Zhang D, Li L, Shen X, Deng X, Dong L, Wu MH, Liu YF. Nanotechnology, 2009, 20: 445101

    Article  Google Scholar 

  25. Liu Z, Davis C, Cai W, He L, Chen X, Dai H. Proc Natl Acad Sci USA, 2008, 105: 1410–1415

    Article  CAS  Google Scholar 

  26. Schipper ML, Nakayama-Ratchford N, Davis CR, Kam NW, Chu P, Liu Z, Sun X, Dai H, Gambhir SS. Nat Nanotechnol, 2008, 3: 216–221

    Article  CAS  Google Scholar 

  27. Brown DM, Stone V, Findlay P, MacNee W, Donaldson K. Occup Environ Med, 2000, 57: 685–691

    Article  CAS  Google Scholar 

  28. Hirano S, Kanno S, Furuyama A. Toxicol Appl Pharm, 2008, 232: 244–251

    Article  CAS  Google Scholar 

  29. Bottini M, Bruckner S, Nika K, Bottini N, Bellucci S, Magrini A, Bergamaschi A, Mustelin T. Toxicol Lett, 2006, 160: 121–126

    Article  CAS  Google Scholar 

  30. Helland A, Wick P, Koehler A, Schmid K, Som C. Environ Health Perspect, 2007, 115: 1125–1231

    Article  CAS  Google Scholar 

  31. Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M. Nat Nanotechnol, 2007, 2: 713–717

    Article  CAS  Google Scholar 

  32. Porter AE, Gass M, Bendall JS, Muller K, Goode A, Skepper JN, Midgley PA, Welland M. ACS Nano, 2009, 3: 1485–1492

    Article  CAS  Google Scholar 

  33. Braakhuis HM, Park M, Gosens I, De Jong WH, Cassee FR. Part Fibre Toxicol, 2014, 11: 18

    Article  Google Scholar 

  34. Rahman I, Yang SR, Biswas SK. Antioxid Redox Signal, 2006, 8: 681–689

    Article  CAS  Google Scholar 

  35. Gasser M, Wick P, Clift MJD, Blank F, Diener L, Yan B, Gehr P, Krug HF, Rothen-Rutishauser B. Part Fibre Toxicol, 2012, 9: 17

    Article  CAS  Google Scholar 

  36. Brown DM, Donaldson K, Borm PJ, Schins RP, Dehnhardt M, Gilmour P, Jimenez LA, Stone V. Am J Physiol Lung C, 2004, 286: 344–353

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoyong Deng or Xizhong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Chen, P., Wang, J. et al. The cytotoxicity of oxidized multi-walled carbon nanotubes on macrophages. Sci. China Chem. 59, 918–926 (2016). https://doi.org/10.1007/s11426-016-5595-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5595-y

Keywords

Navigation