Skip to main content
Log in

Dynamic separation of Xe and Kr by metal-organic framework and covalent-organic materials: a comparison with activated charcoal

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

We systematically investigate dynamic separation of Xe and Kr at room temperature using four representative porous materials (Cu-BTC, ZIF-8, COP-4 and activated carbon (AC)). Results indicate that among the four materials, Cu-BTC not only shows the highest retention volume per gram (V g=788 mL g-1, which is 1.8 times of activated carbon (436 mL g-1)) under flowing condition, but also can separate 350 ppm Xe from 35 ppm Kr mixture in air with a high Xe/Kr selectivity of 8.6 at room temperature and 200 kPa, due to its suitable pore morphology, open metal sites, small side pockets in the framework. Moreover, the Cu-BTC also performs well on individual separation of Xe, Kr, CO2 from five-component gas mixture (Xe:Kr:CO2:Ar:N2=1:1:1:1:0.5, V/V) and has the longest retention time for Xe (20 min) in gas chromatographic separation, suggesting that it is a good candidate for potential applications as polymeric sieves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marshall J, Bird AC. Br J Ophthalmol, 1979, 63: 657–668

    Article  CAS  Google Scholar 

  2. Liu LT, Xu Y, Tang P. J Phys Chem B, 2010, 114: 9010–9016

    Article  CAS  Google Scholar 

  3. Lane GA, Nahrwold ML, Tait AR, Taylor-Busch M, Cohen PJ, Beaudoin AR. Science, 1980, 210: 899–901

    Article  CAS  Google Scholar 

  4. Yeralan S, Doughty D, Blondia R, Hamburger R. Proc SPIEInt Soc Opt Eng, 2005, 5740: 27–35

    CAS  Google Scholar 

  5. Kebabian PL, Romano RR, Freedman A. Meas Sci Technol, 2003, 14: 983–988

    Article  CAS  Google Scholar 

  6. Stein JD, Challa P. Curr Opin Ophthalmol, 2007, 18: 140–145

    Article  Google Scholar 

  7. Kerry FG. Industrial Gas Handbook: Gas Separation and Purification. New York: CRC Press, 2007

    Book  Google Scholar 

  8. Turkevich A, Winsberg L, Flotow H, Adams RM. Proc Natl Acad Sci USA, 1997, 94: 7807–7810

    Article  CAS  Google Scholar 

  9. Saxton CG, Kruth A, Castro M, Wright PA, Howe RF. Microporous Mesoporous Mat, 2010, 129: 68–73

    Article  CAS  Google Scholar 

  10. Carrado KA, Dutta PK, Auerbach SM. Handbook of Zeolite Science and Technology. New York: Marcel Dekker, 2003

    Google Scholar 

  11. Munakata K, Fukumatsu T, Yamatsuki S, Tanaka K, Nishikawa M. J NuclSci Technol, 1999, 36: 818–829

    Article  CAS  Google Scholar 

  12. Jameson CJ, Jameson AK, Lim HM. J Chem Phys, 1997, 107: 4364–4372

    Article  CAS  Google Scholar 

  13. Bazan RE, Bastos-Neto M, Moeller A, Dreisbach F, Staudt R. Adsorption, 2011, 17: 371–383

    Article  CAS  Google Scholar 

  14. Munakata K, Kanjo S, Yamatsuki S, Koga A, Ianovski D. J Nucl Sci Technol, 2003, 40: 695–697

    Article  CAS  Google Scholar 

  15. Couderc G, Hertzsch T, Behrnd NR, Krämer K, Hulliger J. Microporous Mesoporous Mat, 2006, 88: 170–175

    Article  CAS  Google Scholar 

  16. D’Alessandro DM, Smit B, Long JR. Angew Chem Int Ed, 2010, 49: 6058–6082

    Article  Google Scholar 

  17. Li JR, Ma YG, McCarthy MC, Sculley J, Yu JM, Jeong HK, Balbuena PB, Zhou HC. Coord Chem Rev, 2011, 255: 1791–1823

    Article  CAS  Google Scholar 

  18. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR. Chem Rev, 2012, 112: 724–781

    Article  CAS  Google Scholar 

  19. Drage TC, Snape CE, Stevens LA, Wood J, Wang J, Cooper AI, Dawson R, Guo X, Satterley C, Irons R. J Mater Chem, 2012, 22: 2815–2823

    Article  CAS  Google Scholar 

  20. Liu J, Thallapally PK, McGrail BP, Brown DR. Chem Soc Rev, 2012, 41: 2308–2322

    Article  CAS  Google Scholar 

  21. Zhang Z, Yao ZZ, Xiang S, Chen B. Energy Environ Sci, 2014, 7: 2868–2899

    Article  CAS  Google Scholar 

  22. Shekhah O, Belmabkhout Y, Chen Z, Guilerm V, Cairns A, Adil K, Eddaoudi M. Nat Commun, 2014, 5: 4228

    Article  CAS  Google Scholar 

  23. Nugent P, Belmabkhout Y, Burd SD, Cairns AJ, Luebke R, Forrest K, Pham T, Ma S, Space B, Wojtas L, Eddaoudi M, Zaworotko MJ. Nature, 2013, 495: 80–84

    Article  CAS  Google Scholar 

  24. Li B, Wen HM, Zhou W, Chen B. J Phys Chem Lett, 2014, 5: 3468

    Article  CAS  Google Scholar 

  25. He Y, Zhou W, Krishna R, Chen B. Chem Coummun, 2012, 48: 10856

    Article  CAS  Google Scholar 

  26. Xiang S, He Y, Zhang Z, Wu H, Zhou W, Krishna R, Chen B. Nat Commun, 2012, 3: 954

    Article  Google Scholar 

  27. Xiang Z, Peng X, Cheng X, Li X, Cao D. J Phys Chem C, 2011, 115: 19864–19871

    Article  CAS  Google Scholar 

  28. Hu TL, Wang H, Li B, Krishna R, Wu H, Zhou W, Zhao Y, Han Y, Wang X, Zhu W, Yao Z, Xiang S, Chen B. Nat Commun, 2015, 6: 7328

    Article  CAS  Google Scholar 

  29. Wang H, Yao K, Zhang Z, Jagiello J, Gong Q, Han J, Li J. Chem Sci, 2014, 5: 620–624

    Article  CAS  Google Scholar 

  30. Fernandez CA, Liu J, Thallapally PK, Strachan DM. J Am Chem Soc, 2012, 134: 9046–9049

    Article  CAS  Google Scholar 

  31. Banerjee D, Cairns AJ, Liu J, Motkuri RK, Nube SK, Fernandez CA, Krishna R, Strachan DM, Thallapally PK. Acc Chem Res, 2015, 48: 211–219

    Article  CAS  Google Scholar 

  32. Gurdal Y, Keskin S. J Phys Chem C, 2013, 117: 5229–5241

    Article  CAS  Google Scholar 

  33. Ghose SK, Li Y, Yakovenko A, Dooryhee E, Ehm L, Ecker LE, Dippel AC, Halder GJ, Strachan DM, Thallapally PK. J Phys Chem Lett, 2015, 6: 1790–1794

    Article  CAS  Google Scholar 

  34. Hulvey Z, Lawler KV, Qiao Z, Zhou J, Fairen-Jimenez D, Snurr RQ, Ushakov SV, Navrotsky A, Brown CM, Forster PM. J Phys Chem C, 2013, 117: 20116–20126

    Article  CAS  Google Scholar 

  35. Liu J, Thallapally PK, Strachan D. Langmuir, 2012, 28: 11584–11589

    Article  CAS  Google Scholar 

  36. Chen L, Reiss PS, Chong SY, Holden D, Jelfs KE, Hasell T, Little MA, Kewley A, Briggs ME, Stephenson A, Thomas KM, Armstrong JA, Bell J, Busto J, Boel R, Liu J, Strachan DM, Thallapally PK, Cooper AI. Nat Mater, 2014, 134: 18892–18895

    Google Scholar 

  37. Thallapally PK, Grate JW, Motkuri RK. Chem Commun, 2012, 48: 347–349

    Article  CAS  Google Scholar 

  38. Meek ST, Teich-McGoldrick SL, Perry IV JJ, Greathouse JA, Allendorf MD. J Phys Chem C, 2012, 116: 19765–19772

    Article  CAS  Google Scholar 

  39. Perry-IV JJ, Teich-McGoldrick SL, Meek ST, Greathouse JA, Haranczyk M, Allendorf MD. J Phys Chem C, 2014, 118: 11685–11698

    Article  Google Scholar 

  40. Liu J, Strachan DM, Thallapally PK. Chem Commun, 2014, 50: 466–468

    Article  CAS  Google Scholar 

  41. Bae YS, Hauser BG, Colon YG, Hupp JT, Farha OK, Snurr RQ. Microporous Mesoporous Mat, 2013, 169: 176–179

    Article  CAS  Google Scholar 

  42. Dorcheh AS, Denysenko D, Volkmer D, Donner W, Hirscher M. Microporous Mesoporous Mat, 2012, 162: 64–68

    Article  Google Scholar 

  43. Xiong S, Liu Q, Wang Q, Li W, Tang Y, Wang X, Hu S, Chen B. J Mater Chem A, 2015, 3: 10747–10752

    Article  CAS  Google Scholar 

  44. Parkes MV, Staiger CL, Perry IV JJ, Allendorf MD, Greathouse JA. Phys Chem Chem Phys, 2013, 15: 9093–9106

    Article  CAS  Google Scholar 

  45. Wang Q, Wang H, Peng SM, Peng X, Cao DP. J Phys Chem C, 2014, 118: 10221–10229

    Article  CAS  Google Scholar 

  46. Xiang Z, Cao D, Shao X, Wang W, Zhang J, Wu W. Chem Eng Sci, 2010, 65: 3140–3146

    Article  CAS  Google Scholar 

  47. Xiang Z, Hu Z, Cao D, Yang W, Lu J, Han B, Wang W. Angew Chem Int Ed, 2011, 50: 491–494

    Article  CAS  Google Scholar 

  48. Liu S, Xiang Z, Cao D, Mater J. Chem, 2011, 21: 6649–6653

    CAS  Google Scholar 

  49. Zhang P, Sun F, Xiang Z, Shen Z, Yun J, Cao D. Energy Environ Sci, 2014, 7: 442–450

    Article  CAS  Google Scholar 

  50. Xiang Z, Cao D. Macromol Rapid Commun, 2012, 33: 1184–1190

    Article  CAS  Google Scholar 

  51. Xiang Z, Zhou X, Zhou C, Zhong S, He X, Qin C, Cao D. J Mater Chem, 2012, 22: 22663–22669

    Article  CAS  Google Scholar 

  52. Xiang Z, Cao D. J Mater Chem A, 2013, 1: 2691–2718

    Article  CAS  Google Scholar 

  53. Xiang Z, Mercado R, Huck JM, Wang H, Guo Z, Wang W, Cao DP, Haranczyk M, Smit B. J Am Chem Soc, 2015, 137: 13301–13307

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuming Peng.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Xiong, S., Xiang, Z. et al. Dynamic separation of Xe and Kr by metal-organic framework and covalent-organic materials: a comparison with activated charcoal. Sci. China Chem. 59, 643–650 (2016). https://doi.org/10.1007/s11426-016-5582-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5582-3

Keywords

Navigation