Science China Chemistry

, Volume 59, Issue 5, pp 594–600 | Cite as

Molecular simulation study of dynamical properties of room temperature ionic liquids with carbon pieces

Articles SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • 124 Downloads

Abstract

Room temperature ionic liquids (RTILs) with dispersed carbon pieces exhibit distinctive physiochemical properties. To explore the molecular mechanism, RTILs/carbon pieces mixture was investigated by molecular dynamics (MD) simulation in this work. Rigid and flexible carbon pieces in the form of graphene with different thicknesses and carbon nanotubes in different sizes were dispersed in a representative RTIL 1-butyl-3-methyl-imidazolium dicyanamide ([Bmim][DCA]). This study demonstrated that the diffusion coefficients of RTILs in the presence of flexible carbons are similar to those of bulk RTILs at varying temperatures, which is in contrast to the decreased diffusion of RTILs in the presence of rigid carbons. In addition, interfacial ion number density at rigid carbon surfaces was higher than that at flexible ones, which is correlated with the accessible external surface area of carbon pieces. The life time of cation-anion pair in the presence of carbon pieces also exhibited a dependence on carbon flexibility. RTILs with dispersed rigid carbon pieces showed longer ion pair life time than those with flexible ones, in consistence with the observation in diffusion coefficients. This work highlights the necessity of including the carbon flexibility when performing MD simulation of RTILs in the presence of dispersed carbon pieces in order to obtain the reliable dynamical and interfacial structural properties.

Keywords

room temperature ionic liquids carbon pieces flexibility dynamical property ion pair stability interfacial structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plechkova NV, Seddon KR. Chem Soc Rev, 2008, 37: 123–150CrossRefGoogle Scholar
  2. 2.
    Krossing I, Slattery JM, Daguenet C, Dyson PJ, Oleinikova A, Weingärtner H. J Am Chem Soc, 2006, 128: 13427–13434CrossRefGoogle Scholar
  3. 3.
    Maruyama S, Takeyama Y, Taniguchi H, Fukumoto H, Itoh M, Kumigashira H, Oshima M, Yamamoto T, Matsumoto Y. ACS Nano, 2010, 4: 5946–5952CrossRefGoogle Scholar
  4. 4.
    Maton C, De Vos N, Stevens CV. Chem Soc Rev, 2013, 42: 5963–5977CrossRefGoogle Scholar
  5. 5.
    Fedorov MV, Kornyshev AA. Chem Rev, 2014, 114: 2978–3036CrossRefGoogle Scholar
  6. 6.
    Welton T. Chem Rev, 1999, 99: 2071–2084CrossRefGoogle Scholar
  7. 7.
    Zhou F, Liang YM, Liu WM. Chem Soc Rev, 2009, 38: 2590–2599CrossRefGoogle Scholar
  8. 8.
    Bermúdez MD, Jiménez AE, Sanes J, Carrión FJ. Molecules, 2009, 14: 2888–2908CrossRefGoogle Scholar
  9. 9.
    Marsh K, Deev A, Wu AT, Tran E, Klamt A. Korean J Chem Eng, 2002, 19: 357–362CrossRefGoogle Scholar
  10. 10.
    Schneider S, Hawkins T, Rosander M, Vaghjiani G, Chambreau S, Drake G. Energy Fuels, 2008, 22: 2871–2872CrossRefGoogle Scholar
  11. 11.
    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Nat Mater, 2009, 8: 621–629CrossRefGoogle Scholar
  12. 12.
    Brandt A, Pohlmann S, Varzi A, Balducci A, Passerini S. MRS Bulletin, 2013, 38: 554–559CrossRefGoogle Scholar
  13. 13.
    Lewandowski A, Galinski M. J Power Sources, 2007, 173: 822–828CrossRefGoogle Scholar
  14. 14.
    Zhou ZB, Matsumoto H, Tatsumi K. Chem Eur J, 2005, 11: 752–766CrossRefGoogle Scholar
  15. 15.
    Clark JD. Ignition: an Informal History of Liquid Rocket Propellants. New Brunswick, New Jersey: Rutgers University Press, 1972Google Scholar
  16. 16.
    McCrary PD, Beasley PA, Alaniz SA, Griggs CS, Frazier RM, Rogers RD. Angew Chem Int Ed, 2012, 51: 9784–9787CrossRefGoogle Scholar
  17. 17.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666–669CrossRefGoogle Scholar
  18. 18.
    Stoller MD, Park S, Zhu Y, An J, Ruoff RS. Nano Lett, 2008, 8: 3498–3502CrossRefGoogle Scholar
  19. 19.
    Wu ZS, Ren W, Gao L, Liu B, Jiang C, Cheng HM. Carbon, 2009, 47: 493–499CrossRefGoogle Scholar
  20. 20.
    Pu J, Wan S, Zhao W, Mo Y, Zhang X, Wang L, Xue Q. J Phys Chem C, 2011, 115: 13275–13284CrossRefGoogle Scholar
  21. 21.
    Ansón A, Jagiello J, Parra JB, Sanjuán ML, Benito AM, Maser WK, Martínez MT. J Phys Chem B, 2004, 108: 15820–15826CrossRefGoogle Scholar
  22. 22.
    Chen CS, Chen XH, Xu LS, Yang Z, Li WH. Carbon, 2005, 43: 1660–1666CrossRefGoogle Scholar
  23. 23.
    Cicero G, Grossman JC, Schwegler E, Gygi F, Galli G. J Am Chem Soc, 2008, 130: 1871–1878CrossRefGoogle Scholar
  24. 24.
    Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T. Science, 2003, 300: 2072–2074CrossRefGoogle Scholar
  25. 25.
    Fukushima T, Aida T. Chem Eur J, 2007, 13: 5048–5058CrossRefGoogle Scholar
  26. 26.
    Zhang D, Ryu K, Liu X, Polikarpov E, Ly J, Tompson ME, Zhou C. Nano Lett, 2006, 6: 1880–1886CrossRefGoogle Scholar
  27. 27.
    Shim Y, Kim HJ. ACS Nano, 2009, 3: 1693–1702CrossRefGoogle Scholar
  28. 28.
    Fukushima T, Asaka K, Kosaka A, Aida T. Angew Chem Int Ed, 2005, 44: 2410–2413CrossRefGoogle Scholar
  29. 29.
    Borodin O. J Phys Chem B, 2009, 113: 11463–11478CrossRefGoogle Scholar
  30. 30.
    Chaban VV, Voroshylova IV. J Phys Chem B, 2015, 119: 6242–6249CrossRefGoogle Scholar
  31. 31.
    Monk J, Singh R, Hung FR. J Phys Chem C, 2011, 115: 3034–3042CrossRefGoogle Scholar
  32. 32.
    Singh R, Monk J, Hung FR. J Phys Chem C, 2010, 114: 15478–15485CrossRefGoogle Scholar
  33. 33.
    Coasne B, Viau L, Vioux A. J Phys Chem Lett, 2011, 2: 1150–1154CrossRefGoogle Scholar
  34. 34.
    Wander MCF, Shuford KL. J Phys Chem C, 2010, 114: 20539–20546CrossRefGoogle Scholar
  35. 35.
    Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. J Comput Chem, 1997, 18: 1463–1472CrossRefGoogle Scholar
  36. 36.
    Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. J Chem Phys, 1995, 103: 8577–8593CrossRefGoogle Scholar
  37. 37.
    Berendsen HJC, Vanderspoel D, Vandrunen R. Comput Phys Commun, 1995, 91: 43–56CrossRefGoogle Scholar
  38. 38.
    Zhao W, Leroy F, Heggen B, Zahn S, Kirchner B, Balasubramanian S, Müller-Plathe F. J Am Chem Soc, 2009, 131: 15825–15833CrossRefGoogle Scholar
  39. 39.
    Kohagen M, Brehm M, Thar J, Zhao W, Müller-Plathe F, Kirchner B. J Phys Chem B, 2011, 115: 693–702CrossRefGoogle Scholar
  40. 40.
    Zhou X, Wu T, Ding K, Hu B, Hou M, Han B. Chem Commun, 2010, 46: 386–388CrossRefGoogle Scholar
  41. 41.
    Rouha M, Cummings PT. Phys Chem Chem Phys, 2015, 17: 4152–4159CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Guang Feng
    • 1
    • 2
  • Wei Zhao
    • 1
    • 2
  • Peter T. Cummings
    • 3
  • Song Li
    • 1
    • 2
  1. 1.State Key Laboratory of Coal CombustionHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanChina
  3. 3.Department of Chemical and Biomolecular EngineeringVanderbilt UniversityNashvilleUSA

Personalised recommendations