Skip to main content
Log in

Recent progress in studies on polarity of ionic liquids

  • Reviews
  • SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Although many ionic liquids have been reported, their polarity is not completely understood. Different empirical polarity scales for molecular solvents always lead to different polarity orders when they are applied on ionic liquids. Based on a literature survey, this review summarizes the recent polarity scales of ionic liquids according to the following 4 classes: (1) equilibrium and kinetic rate constants of chemical reactions; (2) empirical polar parameters of ionic liquids; (3) spectral properties of probe molecules; (4) multiparameter approaches. In addition, their interrelations are presented. A systematic understanding of the relationship between different polarity parameters of ionic liquids is of great importance for finding a universal set of parameters that can be used to predict the polarities of ionic liquids quantitatively. The potential utilization of the electron paramagnetic resonance in this field is also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reichardt C. Solvents and Solvent Effects in Organic Chemistry. Weinheim: Wiley-VCH, 2003

  2. Katritzky AR, Fara DC, Yang HF, Tamm K, Tamm T, Karelson M. Chem Rev, 2004, 104: 175–198

    Article  CAS  Google Scholar 

  3. Chiappe C, Pieraccini D. J Phys Org Chem, 2005, 18: 275–297

    Article  CAS  Google Scholar 

  4. Hallett JP, Welton T. Chem Rev, 2011, 111: 3508–3576

    Article  CAS  Google Scholar 

  5. Shukla SK, Kumar A. Clean Technol Envir, 2015, 17: 1111–1116

    Article  Google Scholar 

  6. Weingaertner H. Angew Chem Int Ed, 2008, 47: 654–670

    Article  CAS  Google Scholar 

  7. Xu YJ, Zhu X, Li HR. Sci Sinica Chim, 2014, 44: 877–888

    Article  CAS  Google Scholar 

  8. Angelini G, Chiappe C, De Maria P, Fontana A, Gasparrini F, Pieraccini D, Pierini M, Siani G. J Org Chem, 2005, 70: 8193–8196

    Article  CAS  Google Scholar 

  9. Zappacosta R, Di Crescenzo A, Di Profio P, Fontana A, Siani G. J Org Chem, 2015, 80: 2333–2338

    Article  CAS  Google Scholar 

  10. Kirkwood JG. J Chem Phys, 1934, 2: 351–361

    Article  CAS  Google Scholar 

  11. Onsager L. J Am Chem Soc, 1936, 58: 1486–1493

    Article  CAS  Google Scholar 

  12. Kamlet MJ, Taft RW. J Am Chem Soc, 1976, 98: 377–383

    Article  CAS  Google Scholar 

  13. Taft RW, Kamlet MJ. J Am Chem Soc, 1976, 98: 2886–2894

    Article  CAS  Google Scholar 

  14. Yokoyama T, Taft RW, Kamlet MJ. J Am Chem Soc, 1976, 98: 3233–3237

    Article  CAS  Google Scholar 

  15. Kamlet MJ, Abboud JL, Taft RW. J Am Chem Soc, 1977, 99: 6027–6038

    Article  CAS  Google Scholar 

  16. Byrne R, Coleman S, Gallagher S, Diamond D. Phys Chem Chem Phys, 2010, 12: 1895–1904

    Article  CAS  Google Scholar 

  17. Creary X, Willis ED, Gagnon M. J Am Chem Soc, 2005, 127: 18114–18120

    Article  CAS  Google Scholar 

  18. Lancaster NL, Welton T, Young GB. J Chem Soc Perk T 2, 2001, 12: 2267–2270

    Article  Google Scholar 

  19. Lancaster NL, Salter PA, Welton T, Young GB. J Org Chem, 2002, 67: 8855–8861

    Article  CAS  Google Scholar 

  20. Lancaster NL, Welton T. J Org Chem, 2004, 69: 5986–5992

    Article  CAS  Google Scholar 

  21. Crowhurst L, Falcone R, Lancaster NL, Llopis-Mestre V, Welton T. J Org Chem, 2006, 71: 8847–8853

    Article  CAS  Google Scholar 

  22. Weingartner H, Knocks A, Schrader W, Kaatze U. J Phys Chem A, 2001, 105: 8646–8650

    Article  Google Scholar 

  23. Weingartner H. J Mol Liq, 2014, 192: 185–190

    Article  CAS  Google Scholar 

  24. Wakai C, Oleinikova A, Ott M, Weingartner H. J Phys Chem B, 2005, 109: 17028–17030

    Article  CAS  Google Scholar 

  25. Daguenet C, Dyson PJ, Krossing I, Oleinikova A, Slattery J, Wakai C, Weingartner H. J Phys Chem B, 2006, 110: 12682–12688

    Article  CAS  Google Scholar 

  26. Weingartner H. Z Phys Chem, 2006, 220: 1395–1405

    Article  Google Scholar 

  27. Huang MM, Weingartner H. ChemPhysChem, 2008, 9: 2172–2173

    Article  CAS  Google Scholar 

  28. Huang MM, Jiang YP, Sasisanker P, Driver GW, Weingartner H. J Chem Eng Data, 2011, 56: 1494–1499

    Article  CAS  Google Scholar 

  29. Bulut S, Klose P, Huang MM, Weingartner H, Dyson PJ, Laurenczy G, Friedrich C, Menz J, Kummerer K, Krossing I. Chem-Eur J, 2010, 16: 13139–13154

    Article  CAS  Google Scholar 

  30. Ekimova M, Frohlich D, Stalke S, Lenzer T, Oum K. Chem- PhysChem, 2012, 13: 1854–1859

    CAS  Google Scholar 

  31. Jin H, Baker GA, Arzhantsev S, Dong J, Maroncelli M. J Phys Chem B, 2007, 111: 7291–7302

    Article  CAS  Google Scholar 

  32. Luo HM, Baker GA, Dai S. J Phys Chem B, 2008, 112: 10077–10081

    Article  CAS  Google Scholar 

  33. Jin H, O’Hare B, Dong J, Arzhantsev S, Baker GA, Wishart JF, Benesi AJ, Maroncelli M. J Phys Chem B, 2008, 112: 81–92

    Article  CAS  Google Scholar 

  34. Deng LS, Wang Q, Chen YL, Zhang ZF, Tang J. J Mol Liq, 2013, 187: 246–251

    Article  CAS  Google Scholar 

  35. Chen YL, Wang Q, Zhang ZF, Tang J. Ind Eng Chem Res, 2012, 51: 15293–15298

    Article  CAS  Google Scholar 

  36. Zhang ZH, Wei J, Ma XX, Xu WG, Tong J, Guan W, Yang JZ. Sci Sinica Chim, 2014, 44: 1005–1013

    Article  CAS  Google Scholar 

  37. Wei J, Bu XX, Guan W, Xing NN, Fang DW, Wu Y. Rsc Adv, 2015, 5: 70333–70338

    Article  CAS  Google Scholar 

  38. Zaitsau DH, Yermalayeu VA, Emel’yanenko VN, Verevkin SP, Welz-biermann U, Schubert T. Sci China Chem, 2012, 55: 1525–1531

    Article  CAS  Google Scholar 

  39. Wei J, Ma TY, Ma XX, Guan W, Liu QS, Yang JZ. Rsc Adv, 2014, 4: 30725–30732

    Article  CAS  Google Scholar 

  40. Hong M, Liu RJ, Yang HX, Guan W, Tong J, Yang JZ. J Chem Thermodyn, 2014, 70: 214–218

    Article  CAS  Google Scholar 

  41. Jarvas G, Quellet C, Dallos A. Fluid Phase Equilibr, 2011, 309: 8–14

    Article  CAS  Google Scholar 

  42. Reichardt C. ACS Sym Ser, 2005, 7: 339–351

    CAS  Google Scholar 

  43. Reichardt C. Angew Chem Int Ed, 1965, 4: 29–40

    Article  Google Scholar 

  44. Carmichael AJ, Seddon KR. J Phys Org Chem, 2000, 13: 591–595

    Article  CAS  Google Scholar 

  45. Zhang SG, Qi XJ, Ma XY, Lu LJ, Deng YQ. J Phys Chem B, 2010, 114: 3912–3920

    Article  CAS  Google Scholar 

  46. Muldoon MJ, Gordon CM, Dunkin IR. J Chem Soc Perk T 2, 2001, 4: 433–435

    Article  Google Scholar 

  47. Akdogan Y, Heller J, Zimmermann H, Hinderberger D. Phys Chem Chem Phys, 2010, 12: 7874–7882

    Article  CAS  Google Scholar 

  48. Mladenova BY, Kattnig DR, Grampp G. J Phys Chem B, 2011, 115: 8183–8198

    Article  CAS  Google Scholar 

  49. Kawai A, Hidemori T, Shibuya K. Chem Lett, 2004, 33: 1464–1465

    Article  CAS  Google Scholar 

  50. Strehmel V, Lungwitz R, Rexhausen H, Spange S. New J Chem, 2010, 34: 2125–2131

    Article  CAS  Google Scholar 

  51. Strehmel V, Laschewsky A, Stoesser R, Zehl A, Herrmann W. J Phys Org Chem, 2006, 19: 318–325

    Article  CAS  Google Scholar 

  52. Strehmel V. Macromol Symp, 2007, 254: 25–33

    Article  CAS  Google Scholar 

  53. Nunes P, Nagy NV, Alegria E, Pombeiro AJL, Correia I. Inorg Chim Acta, 2014, 409: 465–471

    Article  CAS  Google Scholar 

  54. Nunes P, Nagy NV, Alegria E, Pombeiro AJL, Correia I. J Mol Struct, 2014, 1060: 142–149

    Article  CAS  Google Scholar 

  55. Strehmel V, Berdzinski S, Rexhausen H. J Mol Liq, 2014, 192: 153–170

    Article  CAS  Google Scholar 

  56. Fujisawa T, Fukuda M, Terazima M, Kimura Y. J Phys Chem A, 2006, 110: 6164–6172

    Article  CAS  Google Scholar 

  57. Kimura Y, Fukuda M, Fujisawa T, Terazima M. Chem Lett, 2005, 34: 338–339

    Article  CAS  Google Scholar 

  58. Cha DK, Kloss AA, Tikanen AC, Fawcett WR. Phys Chem Chem Phys, 1999, 1: 4785–4790

    Article  Google Scholar 

  59. Fletcher KA, Storey IA, Hendricks AE, Pandey S, Pandey S. ACS Sym Ser, 2001, 3: 210–215

    CAS  Google Scholar 

  60. Karmakar R, Samanta A. J Phys Chem A, 2002, 106: 6670–6675

    Article  CAS  Google Scholar 

  61. Karmakar R, Samanta A. J Phys Chem A, 2003, 107: 7340–7346

    Article  CAS  Google Scholar 

  62. Mandal PK, Samanta A. J Phys Chem B, 2005, 109: 15172–15177

    Article  CAS  Google Scholar 

  63. Kashyap HK, Biswas R. J Phys Chem B, 2010, 114: 16811–16823

    Article  CAS  Google Scholar 

  64. Zech O, Hunger J, Sangoro JR, Iacob C, Kremer F, Kunz W, Buchner R. Phys Chem Chem Phys, 2010, 12: 14341–14350

    Article  CAS  Google Scholar 

  65. Contreras R, Aizman A, Tapia RA, Cerda-Monje A. J Phys Chem B, 2013, 117: 1911–1920

    Article  CAS  Google Scholar 

  66. Klein R, Zech O, Maurer E, Kellermeier M, Kunz W. J Phys Chem B, 2011, 115: 8961–8969

    Article  CAS  Google Scholar 

  67. Kurnia KA, Lima F, Claudio AFM, Coutinho JAP, Freire MG. Phys Chem Chem Phys, 2015, 17: 18980–18990

    Article  CAS  Google Scholar 

  68. Crowhurst L, Mawdsley PR, Perez-Arlandis JM, Salter PA, Welton T. Phys Chem Chem Phys, 2003, 5: 2790–2794

    Article  CAS  Google Scholar 

  69. Wu YS, Sasaki T, Kazushi K, Seo T, Sakurai K. J Phys Chem B, 2008, 112: 7530–7536

    Article  CAS  Google Scholar 

  70. Acree WE, Abraham MH. J Chem Technol Biot, 2006, 81: 1441–1446

    Article  CAS  Google Scholar 

  71. Abraham MH. Chem Soc Rev, 1993, 22: 73–83

    Article  CAS  Google Scholar 

  72. Poole SK, Poole CF. Analyst, 1995, 120: 289–294

    Article  CAS  Google Scholar 

  73. Poole CF. J Chromatogr A, 2004, 1037: 1–1

    Article  CAS  Google Scholar 

  74. Lee SB. J Chem Technol Biot, 2005, 80: 133–137

    Article  CAS  Google Scholar 

  75. Del Valle JC, Blanco FG, Catalan J. J Phys Chem B, 2015, 119: 4683–4692

    Article  Google Scholar 

  76. Pandey A, Rai R, Pal M, Pandey S. Phys Chem Chem Phys, 2014, 16: 1559–1568

    Article  CAS  Google Scholar 

  77. Kawai A, Hidemori T, Shibuya K. Chem Phys Lett, 2005, 414: 378–383

    Article  CAS  Google Scholar 

  78. Miyake Y, Akai N, Kawai A, Shibuya K. J Phys Chem A, 2011, 11: 6347–6356

    Article  Google Scholar 

  79. Baker GA, Rachford AA, Castellano FN, Baker SN. ChemPhysChem, 2013, 14: 1025–1030

    Article  CAS  Google Scholar 

  80. Aparicio S, Atilhan M, Khraisheh M, Alcalde R. J Phys Chem B, 2011, 115: 12473–12486

    Article  CAS  Google Scholar 

  81. Singh T, Rao KS, Kumar A. ChemPhysChem, 2011, 12: 836–845

    Article  CAS  Google Scholar 

  82. Simijonovic D, Petrovic ZD, Petrovic VP. J Mol Liq, 2013, 179: 98–103

    Article  CAS  Google Scholar 

  83. Ladesov AV, Kosyakov DS, Bogolitsyn KG, Gorbova NS. Russ J Phys Chem A, 2015, 89: 1814–1820

    Article  CAS  Google Scholar 

  84. Zhang PF, Gong YT, Lv YQ, Guo Y, Wang Y, Wang CM, Li HR. Chem Commun, 2012, 48: 2334–2336

    Article  CAS  Google Scholar 

  85. Funasako Y, Mochida T, Takahashi K, Sakurai T, Ohta H. Chem-Eur J, 2012, 18: 11929–11936

    Article  CAS  Google Scholar 

  86. Ding F, Zheng JJ, Chen YQ, Chen KH, Cui GK, Li HR, Wang CM. Ind Eng Chem Res, 2014, 53: 18568–18574

    Article  CAS  Google Scholar 

  87. Shen MM, Che SY, Zhang YY, Yao J, Li HR. J Chem Eng Data, 2014, 59: 3960–3968

    Article  CAS  Google Scholar 

  88. Ueda T, Mochida T. Organometallics, 2015, 34: 1279–1286

    Article  CAS  Google Scholar 

  89. Komurasaki A, Funasako Y, Mochida T. Dalton T, 2015, 44: 7595–7605

    Article  CAS  Google Scholar 

  90. Funasako Y, Kaneshige K, Inokuchi M, Hosokawa H, Mochida T. J Organomet Chem, 2015, 797: 120–124

    Article  CAS  Google Scholar 

  91. Lynden-bell RM, Del Popolo MG, Youngs TGA, Kohanoff J, Hanke CG, Harper JB, Pinilla CC. Acc Chem Res, 2007, 40: 1138–1145

    Article  CAS  Google Scholar 

  92. Fumino K, Ludwig R. J Mol Liq, 2014, 192: 94–102

    Article  CAS  Google Scholar 

  93. Derecskei B, Derecskei-Kovacs A. Mol Sim, 2008, 34: 1167–1175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoran Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Chen, K., Yao, J. et al. Recent progress in studies on polarity of ionic liquids. Sci. China Chem. 59, 517–525 (2016). https://doi.org/10.1007/s11426-016-5579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5579-y

Keywords

Navigation