Skip to main content
Log in

Polyoxometalate-based ionic liquids-promoted CO2 conversion

  • Reviews
  • SPECIAL TOPIC · Ionic Liquids: Energy, Materials & Environment
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Polyoxometalates (POMs) are a class of molecular metal oxides, showing numerous applications in various chemical processes due to their unique acid/base and redox features. By adjusting the tunable molecular structures of the anions and counter cations, plenty of POM-based ionic liquids (POM-based ILs) have been fabricated to be used in various fields, such as catalysis, structural chemistry and material science. As a class of excellent catalysts, POM-based ILs have shown advantages in the emerging field of CO2 utilization such as CO2 capture, cycloaddition of CO2 to epoxides, and reduction of CO2, owing to the efficient activation of CO2 by POM anions. This review summarizes recent advances in the catalysis of POM-based ILs, and particularly highlights the areas that are related to CO2 conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pope MT, Müller A. Angew Chem Int Ed, 1991, 30: 34–48

    Article  Google Scholar 

  2. Long DL, Burkholder E, Cronin L. Chem Soc Rev, 2007, 36: 105–121

    Article  CAS  Google Scholar 

  3. Miras HN, Yan J, Long DL, Cronin L. Chem Soc Rev, 2012, 41: 7403–7430

    Article  CAS  Google Scholar 

  4. Nyman M, Burns PC. Chem Soc Rev, 2012, 41: 7354–7367

    Article  CAS  Google Scholar 

  5. Wang SS, Yang GY. Chem Rev, 2015, 115: 4893–4962

    Article  CAS  Google Scholar 

  6. Katsoulis DE, Pope MT. J Chem Soc Dalton Trans, 1989: 1483–1489

    Google Scholar 

  7. Szczepankiewicz SH, Ippolito CM, Santora BP, VandeVen TJ, Ippolito GA, Fronckowiak L, Wiatrowski F, Power T, Kozik M. Inorg Chem, 1998, 37: 4344–4352

    Article  CAS  Google Scholar 

  8. Rickert PG, Antonio MR, Firestone MA, Kubatko KA, Szreder T, Wishart JF, Dietz ML. Dalton Trans, 2007: 529–531

    Google Scholar 

  9. Leng Y, Wang J, Zhu DR, Ren XQ, Ge HQ, Shen L. Angew Chem Int Ed, 2009, 48: 168–171

    Article  CAS  Google Scholar 

  10. Qiao YX, Hou ZS, Li H, Hu Y, Feng B, Wang XR, Hua L, Huang QF. Green Chem, 2009, 11: 1955–1960

    Article  CAS  Google Scholar 

  11. Yasuda H, He LN, Sakakura T, Hu C. J Catal, 2005, 233: 119–122

    Article  CAS  Google Scholar 

  12. Langanke J, Greiner L, Leitner W. Green Chem, 2013, 15: 1173–1182

    Article  CAS  Google Scholar 

  13. Huang WL, Zhu WS, Li HM, Shi H, Zhu GP, Liu H, Chen GY. Ind Eng Chem Res, 2010, 49: 8998–9003

    Article  CAS  Google Scholar 

  14. He LN. Carbon Dioxide Chemistry (Chinese). Beijing: Science Press, 2013

  15. He LN, Wang JQ, Wang JL. Pure Appl Chem, 2009, 81: 2069–2080

    Article  CAS  Google Scholar 

  16. Katsoulis DE, Tausch VS, Pope MT. Inorg Chem, 1987, 26: 215–216

    Article  CAS  Google Scholar 

  17. Katsoulis DE, Pope MT. Polyanion oxygen carriers. J Am Chem Soc, 1984, 106: 2737–2738

    Article  CAS  Google Scholar 

  18. Paul J, Page P, Sauers P, Ertel K, Pasternak C, Lin W, Kozik M. Transition-metal-substituted heteropoly anions in nonpolar solvents: structures and interaction with carbon dioxide. In: Yamase T, Pope M, Eds. Polyoxometalate Chemistry for Nano-Composite Design. US: Springer, 2002. 205–215

    Google Scholar 

  19. Xi ZW, Zhou N, Sun Yu, Li KL. Science, 2001, 292: 1139–1141

    Article  CAS  Google Scholar 

  20. Kholdeeva OA, Maksimovskaya RI. J Mol Catal A: Chem, 2007, 262: 7–24

    Article  CAS  Google Scholar 

  21. Antonova NS, Carbó JJ, Kortz U, Kholdeeva OA, Poblet JM. J Am Chem Soc, 2010, 132: 7488–7497

    Article  CAS  Google Scholar 

  22. Kamata K, Kotani M, Yamaguchi K, Hikichi S, Mizuno N. Chem Eur J, 2007, 13: 639–648

    Article  CAS  Google Scholar 

  23. Ding Y, Zhao W, Hua H, Ma BC. Green Chem, 2008, 10: 910–913

    Article  CAS  Google Scholar 

  24. Leng Y, Zhao JW, Jiang PP, Wang J. ACS Appl Mater Interf, 2014, 6: 5947–5954

    Article  CAS  Google Scholar 

  25. Zhu H, Guo W, Li M, Zhao L, Li S, Li Y, Lu X, Shan H. ACS Catal, 2011, 1: 1498–1510

    Article  CAS  Google Scholar 

  26. Zhu WS, Wu PW, Yang L, Chang YH, Chao YH, Li HM, Jiang YQ, Jiang W, Xun SH. Chem Eng J, 2013, 229: 250–256

    Article  CAS  Google Scholar 

  27. Ge JH, Zhou YM, Yang Y, Xue MW. Ind Eng Chem Res, 2011, 50: 13686–13692

    Article  CAS  Google Scholar 

  28. Liu Y, Wang YT, Zhai CP, Chen WP, Qiao CZ. Ind Eng Chem Res, 2014, 53: 14633–14640

    Article  CAS  Google Scholar 

  29. North M, Pasquale R, Young C. Green Chem, 2010, 12: 1514–1539

    Article  CAS  Google Scholar 

  30. Büttner H, Steinbauer J, Werner T. ChemSusChem, 2015, 8: 2655–2669

    Article  Google Scholar 

  31. Wang X, Zhou Y, Guo Z, Chen G, Li J, Shi Y, Liu Y, Wang J. Chem Sci, 2015, 6: 6916–6924

    Article  CAS  Google Scholar 

  32. Kimura T, Kamata K, Mizuno N. Angew Chem Int Ed, 2012, 51: 6700–6703

    Article  CAS  Google Scholar 

  33. Wang YB, Wang YM, Zhang WZ, Lu XB. J Am Chem Soc, 2013, 135: 11996–12003

    Article  CAS  Google Scholar 

  34. Song QW, Chen WQ, Ma R, Yu A, Li QY, Chang Y, He LN. ChemSusChem, 2015, 8: 821–827

    Article  CAS  Google Scholar 

  35. Stoelzel M, Präsang C, Inoue S, Enthaler S, Driess M. Angew Chem Int Ed, 2012, 51: 399–403

    Article  CAS  Google Scholar 

  36. Wang S, Shao P, Chen C, Xi CJ. Org Lett, 2015, 17: 5112–5115

    Article  CAS  Google Scholar 

  37. Wang X, Liu Y, Martin R. J Am Chem Soc, 2015, 137: 6476–6479

    Article  CAS  Google Scholar 

  38. Wang WH, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem Rev, 2015, 115: 12936–12973

    Article  CAS  Google Scholar 

  39. Bagherzadeh S, Mankad NP. J Am Chem Soc, 2015, 137: 10898–10901

    Article  CAS  Google Scholar 

  40. Chen L, Guo Z, Wei XG, Gallenkamp C, Bonin J, Anxolabéhère- Mallart E, Lau KC, Lau TC, Robert M. J Am Chem Soc, 2015, 137: 10918–10921

    Article  CAS  Google Scholar 

  41. Gao GG, Li FY, Xu L, Liu XZ, Yang YY. J Am Chem Soc, 2008, 130: 10838–10839

    Article  CAS  Google Scholar 

  42. Yang ZZ, Zhao YN, He LN. RSC Adv, 2011, 1: 545–567

    Article  CAS  Google Scholar 

  43. Liu AH, Ma R, Song C, Yang ZZ, Yu A, Cai Y, He LN, Zhao YN, Yu B, Song QW. Angew Chem Int Ed, 2012, 51: 11306–11310

    Article  CAS  Google Scholar 

  44. Gunjakar JL, Kim IY, Hwang SJ. Eur J Inorg Chem, 2015, 2015: 1198–1202

    Article  CAS  Google Scholar 

  45. Yang ZZ, He LN, Gao J, Liu AH, Yu B. Energy Environ Sci, 2012, 5: 6602–6639

    Article  CAS  Google Scholar 

  46. Zhang S, Li YN, Zhang YW, He LN, Yu B, Song QW, Lang XD. ChemSusChem, 2014, 7: 1484–1489

    Article  CAS  Google Scholar 

  47. Clements JH. Ind Eng Chem Res, 2003, 42: 663–674

    Article  CAS  Google Scholar 

  48. Martín C, Fiorani G, Kleij AW. ACS Catal, 2015, 5: 1353–1370

    Article  Google Scholar 

  49. Khan A, Yang L, Xu J, Jin LY, Zhang YJ. Angew Chem Int Ed, 2014, 53: 11257–11260

    Article  CAS  Google Scholar 

  50. Zhang YJ, Yang JH, Kim SH, Krische MJ. J Am Chem Soc, 2010, 132: 4562–4563

    Article  CAS  Google Scholar 

  51. Aguirre-Chagala YE, Santos JL, Aguilar-Castillo BA, Herrera-Alonso M. ACS Macro Lett, 2014, 3: 353–358

    Article  CAS  Google Scholar 

  52. Wong WL, Chan PH, Zhou ZY, Lee KH, Cheung KC, Wong KY. ChemSusChem, 2008, 1: 67–70

    Article  CAS  Google Scholar 

  53. Roshan KR, Kim BM, Kathalikkattil AC, Tharun J, Won YS, Park DW. Chem Commun, 2014, 50: 13664–13667

    Article  CAS  Google Scholar 

  54. Sankar M, Tarte NH, Manikandan P. Appl Catal A, 2004, 276: 217–222

    Article  CAS  Google Scholar 

  55. Chen FW, Li XF, Wang B, Xu TG, Chen SL, Liu P, Hu CW. Chem Eur J, 2012, 18: 9870–9876

    Article  CAS  Google Scholar 

  56. Chen FW, Dong T, Chi YN, Xu YQ, Hu CW. Catal Lett, 2010, 139: 38–41

    Article  CAS  Google Scholar 

  57. Zhang YH, Zhang DD, Huo ZY, Ma PT, Niu JY, Wang JP. RSC Adv, 2014, 4: 28848–28851

    Article  CAS  Google Scholar 

  58. Chen SM, Liu Y, Guo JP, Li PZ, Huo ZY, Ma PT, Niu JY, Wang JP. Dalton Trans, 2015, 44: 10152–10155

    Article  CAS  Google Scholar 

  59. Sun DW, Zhai HJ. Catal Commun, 2007, 8: 1027–1030

    Article  CAS  Google Scholar 

  60. Aresta M, Dibenedetto A, Tommasi I. Eur J Inor Chem, 2001, 2001: 1801–1806

    Article  Google Scholar 

  61. Bai DS, Jing HW. Green Chem, 2010, 12: 39–41

    Article  CAS  Google Scholar 

  62. Chen FW, Dong T, Xu TG, Li XF, Hu CW. Green Chem, 2011, 13: 2518–2524

    Article  CAS  Google Scholar 

  63. Wu J, Kozak JA, Simeon F, Hatton TA, Jamison TF. Chem Sci, 2014, 5: 1227–1231

    Article  CAS  Google Scholar 

  64. Kumar S, Singhal N, Singh RK, Gupta P, Singh R, Jain SL. Dalton Trans, 2015, 44: 11860–11866

    Article  CAS  Google Scholar 

  65. Wang JL, Wang JQ, He LN, Dou XY, Wu F. Green Chem, 2008, 10: 1218–1223

    Article  CAS  Google Scholar 

  66. Lin S, Diercks CS, Zhang YB, Kornienko N, Nichols EM, Zhao Y, Paris AR, Kim D, Yang P, Yaghi OM, Chang CJ. Science, 2015, 349: 1208–1213

    Article  CAS  Google Scholar 

  67. Oh YJ, Hu XL. Chem Soc Rev, 2013, 42: 2253–2261

    Article  CAS  Google Scholar 

  68. Costentin C, Robert M, Saveant JM. Chem Soc Rev, 2013, 42: 2423–2436

    Article  CAS  Google Scholar 

  69. Das S, Wan Daud WMA. Renew Sust Energ Rev, 2014, 39: 765–805

    Article  CAS  Google Scholar 

  70. Oms O, Dolbecq A, Mialane P. Chem Soc Rev, 2012, 41: 7497–7536

    Article  CAS  Google Scholar 

  71. Sadakane M, Steckhan E. Chem Rev, 1998, 98: 219–238

    Article  CAS  Google Scholar 

  72. Zhang J, Goh JK, Tan WT, Bond AM. Inorg Chem, 2006, 45: 3732–3740

    Article  CAS  Google Scholar 

  73. Keita B, Nadjo L. J Mol Catal A: Chem, 2007, 262: 190–215

    Article  CAS  Google Scholar 

  74. Nambu JI, Ueda T, Guo SX, Boas JF, Bond AM. Dalton Trans, 2010, 39: 7364–7373

    Article  CAS  Google Scholar 

  75. Rinfray C, Renaudineau S, Izzet G, Proust A. Chem Commun, 2014, 50: 8575–8577

    Article  CAS  Google Scholar 

  76. Girardi M, Blanchard S, Griveau S, Simon P, Fontecave M, Bedioui F, Proust A. Eur J Inorg Chem, 2015, 2015: 3642–3648

    Article  CAS  Google Scholar 

  77. Lykakis IN, Tanielian C, Seghrouchni R, Orfanopoulos M. J Mol Catal A: Chem, 2007, 262: 176–184

    Article  CAS  Google Scholar 

  78. Papaconstantinou E. Chem Soc Rev, 1989, 18: 1–31

    Article  CAS  Google Scholar 

  79. Khenkin AM, Efremenko I, Weiner L, Martin JML, Neumann R. Chem Eur J, 2010, 16: 1356–1364

    Article  CAS  Google Scholar 

  80. Ettedgui J, Diskin-Posner Y, Weiner L, Neumann R. J Am Chem Soc, 2011, 133: 188–190

    Article  CAS  Google Scholar 

  81. Kamata K, Kimura T, Sunaba H, Mizuno N. Catal Today, 2014, 226: 160–166

    Article  CAS  Google Scholar 

  82. Wang MY, Song QW, Ma R, Xie JN, He LN. Green Chem, 2016, 18: 282–287

    Article  Google Scholar 

  83. Wang DW, Zhong SH. J Mol Catal (China), 2003: 347–352

    Google Scholar 

  84. Wang DW, Zhong SH. Chinese J Catal, 2003, 24: 705–710

    CAS  Google Scholar 

  85. Wang R, Yang F. A catalytic and application for carbon dioxide into methylacrylic acid. China Patent, 101745428A, 2009-12-30

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang-Nian He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, MY., Ma, R. & He, LN. Polyoxometalate-based ionic liquids-promoted CO2 conversion. Sci. China Chem. 59, 507–516 (2016). https://doi.org/10.1007/s11426-016-5560-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5560-9

Keywords

Navigation