Skip to main content
Log in

Electrochemical capacitors based on the composite of graphene and nickel foam

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

An improved Hummers method was developed for the simple and efficient production of high-quality graphene oxide (GO), and the composite of GO and nickel foam (NF) (GO/NF) was fabricated by ultrasonication-vacuum-assisted deposition of an aqueous solution of GO on NF. After chemical or thermal reduction, the composite of reduced GO and nickel foam (rGO/NF) was obtained. The electrochemical capacitance performance of rGO/NF was investigated using cyclic voltammetry and galvanostatic charge/discharge measurements. The chemically reduced rGO/NF composite (C-rGO/NF) exhibited high specific capacitance of 379 F/g at 1.0 A/g and 266.5 F/g at 10 A/g. We also prepared thermally reduced graphene oxide at 473 K in order to illuminate the difference in effect between the chemical and low-temperature thermal reduction methods on electrochemical properties. The cycling performance of thermally reduced rGO/NF composite (T-rGO/NF) and C-rGO/NF had ~91% and ~95% capacitance retention after 2000 cycles in a 6 mol/L KOH electrolyte, respectively. Electrochemical experiments indicated that the obtained rGO/NF has very good capacitive performance and could be used as a potential application of electrochemical capacitors. Our work revealed high electrochemical capacitor performance of rGO/NF composite and provided a facile method of rGO/NF preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu CG, Yu ZN, Neff D, Zhamu A, Jiang B. Nano Lett, 2010, 10: 4863–4868

    Article  CAS  Google Scholar 

  2. Han JW, Zhang LL, Lee S, Oh J, Lee K, Potts J, Ji J, Zhao X, Ruoff RS, Park S. ACS Nano, 2013, 7: 19–26

    Article  CAS  Google Scholar 

  3. Mahmood N, Zhang CZ, Yin H, Hou YL. J Mater Chem A, 2014, 2: 15–32

    Article  CAS  Google Scholar 

  4. Chabot V, Higgins D, Yu A, Xiao XC, Chen ZW, Zhang JJ. Energy Environ Sci, 2014, 7: 1564–1596

    Article  CAS  Google Scholar 

  5. Sun YQ, Shi GQ. J Polym Sci Pol Phys, 2013, 51: 231–253

    Article  CAS  Google Scholar 

  6. Ning GQ, Fan ZJ, Wang G, Gao JS, Qian WZ, Wei F. Chem Commun, 2011, 47: 5976–5978

    Article  CAS  Google Scholar 

  7. Stoller M, Park S, Zhu YW, An JH, Ruoff RS. Nano Lett, 2008, 8: 3498–3502

    Article  CAS  Google Scholar 

  8. Raccichini R, Varzi R, Passerini S, Scrosati B. Nat Mater, 2015, 14: 271–279

    Article  CAS  Google Scholar 

  9. Zhang QH, Li YG, Wang HZ, Richard B. Chem Soc Rev, 2015, 44: 3639–3665

    Article  Google Scholar 

  10. Ren GF, Pana X, Baynea S, Fan ZY. Carbon, 2014, 71: 94–101

    Article  CAS  Google Scholar 

  11. Reina A, Jia XT, Ho J, Nezich D, Son H, Bulovic V, Kong J. Nano Lett, 2009, 9: 30–35

    Article  CAS  Google Scholar 

  12. Park HJ, Meyer J, Roth S, Skakalova V. Carbon, 2010, 48: 1088–1094

    Article  CAS  Google Scholar 

  13. Xu YX, Lin ZY, Huang XQ, Liu Y, Huang Y, Duan XF. ACS Nano, 2013, 7: 4042–4049

    Article  CAS  Google Scholar 

  14. Wang H, Feng HB, Li JH. Small, 2014, 10: 2165–2181

    Article  CAS  Google Scholar 

  15. Chen J, Li C, Shi GQ. J Phys Chem Lett, 2013, 4: 1244–1253

    Article  CAS  Google Scholar 

  16. Hummers WS, Offeman RE. J Am Chem Soc, 1958, 80: 1339

    Article  CAS  Google Scholar 

  17. Ang PK, Wang S, Bao Q, Loh KP. ACS Nano, 2009, 3: 3587–3594

    Article  CAS  Google Scholar 

  18. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Sun ZZ, Slesarev A, Alemany LB, Lu W, Tour JM. ACS Nano, 2010, 4: 4806–4814

    Article  CAS  Google Scholar 

  19. Chen J, Yao B, Li C, Shi GQ. Carbon, 2013, 64: 225–229

    Article  CAS  Google Scholar 

  20. Zhao JP, Pei S, Ren W, Gao L, Cheng H. ACS Nano, 2010, 4: 5245–5252

    Article  CAS  Google Scholar 

  21. Zhang H, Bhat VV, Gallego NC, Contescu CI. ACS Appl Mater Interf, 2012, 4: 3239–3246

    Article  CAS  Google Scholar 

  22. Lucchese M, Stavale F, Martins E, Jorio A. Carbon, 2010, 48: 1592–1597

    Article  CAS  Google Scholar 

  23. Konstantin N, Ozbas B, Hannes C, Car R. Nano Lett, 2008, 8: 36–41

    Article  Google Scholar 

  24. Chen J, Li Y, Huang L, Li C, Shi GQ. Carbon, 2015, 81: 826–834

    Article  CAS  Google Scholar 

  25. Li ZF, Zhang H, Liu Q, Sun L, Stanciu L, Xie J. ACS Appl Mater Interf, 2013, 5: 2685–2691

    Article  CAS  Google Scholar 

  26. Fan Z, Zhao Q, Li T, Yan J, Ren Y, Feng J, Wei T. Carbon, 2012, 50: 1699–17034

    Article  CAS  Google Scholar 

  27. Wen B, Cao MS, Lu MM, Cao W, Shi H, Liu J, Wang XX, Jin HB, Fang XY, Wang WZ, Yuan J. Adv Mater, 2014, 26: 3484–3489

    Article  CAS  Google Scholar 

  28. Chen J, Sheng KX, Luo PH, Li C, Shi GQ. Adv Mater, 2012, 24: 4569–4573

    Article  CAS  Google Scholar 

  29. Xie YB, Zhan YY. J Porous Mater, 2015, 22: 403–412

    Article  CAS  Google Scholar 

  30. Zhou XL, Wang M, Lian J, Lian YF. Sci China Tech Sci, 2014, 57: 278–283

    Article  CAS  Google Scholar 

  31. Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji Y, Yu ZZ. Polymer, 2010, 51: 1191–1196

    Article  CAS  Google Scholar 

  32. Ji JY, Zhang LL, Ji HX, Li Y, Zhang FB, Ruoff RS. ACS Nano, 2013, 7: 6237–6243

    Article  CAS  Google Scholar 

  33. Wang L, Li X, Guo T, Yan X, Tay B. Int J Hydrogen Energ, 2014, 39: 7876–7884

    Article  CAS  Google Scholar 

  34. Ye S, Feng JC, Wu PY. ACS Appl Mater Interf, 2013, 5: 7122–7129

    Article  CAS  Google Scholar 

  35. Xiao T, Hu X, Heng B, Huang X. J Alloy Compd, 2013, 549: 147–151

    Article  CAS  Google Scholar 

  36. Burke A. J Power Sources, 2000, 91: 37–50

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongfu Lian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Wang, M. & Lian, Y. Electrochemical capacitors based on the composite of graphene and nickel foam. Sci. China Chem. 59, 405–411 (2016). https://doi.org/10.1007/s11426-016-5559-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-5559-2

Keywords

Navigation