Skip to main content

Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains

Abstract

Three types of semi-crystalline photovoltaic polymers were synthesized by incorporating a siloxane-terminated organic/inorganic hybrid side-chain and changing the number of fluorine substituents. A branch point away from a polymer main backbone in the siloxane-containing side-chains and the intra- and/or interchain noncovalent coulombic interactions enhance a chain planarity and facile interchain organization. The resulting polymers formed strongly agglomerated films with high roughness, suggesting strong intermolecular interactions. The optical band gap of ca. 1.7 eV was measured for all polymers with a pronounced shoulder peak due to tight π-π stacking. With increasing the fluorine substituents, the frontier energy levels decreased and preferential face-on orientation was observed. The siloxane-terminated side-chains and fluorine substitution promoted the intermolecular packing, showing well resolved lamellar scatterings up to (300) for this series of polymers in the grazing incidence wide angle X-ray scattering measurements. The PPsiDTBT, PPsiDTFBT and PPsiDT2FBT devices showed a power conversion efficiency of 3.16%, 4.40% and 5.65%, respectively, by blending with PC71BM. Langevin-type bimolecular charge recombination was similar for three polymeric solar cells. The main loss in the photocurrent generation for PPsiDTBT:PC71BM was interpreted to originate from the trap assisted charge recombination by measuring light-intensity dependent short-circuit current density (J sc) and open-circuit voltage (V oc). Our results provide a new insight into the rational selection of solubilizing substituents for optimizing crystalline interchain packing with appropriate miscibility with PC71BM for further optimizing polymer solar cells.

This is a preview of subscription content, access via your institution.

References

  1. He Z, Zhong C, Su S, Xu M, Wu H, Cao Y. Nat Photonics, 2012, 6: 591–595

    Google Scholar 

  2. Li Y. Acc Chem Res, 2012, 45: 723–733

    CAS  Article  Google Scholar 

  3. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem Rev, 2015, 115: 12666–12731

    CAS  Article  Google Scholar 

  4. Ye L, Zhang S, Huo L, Zhang M, Hou J. Acc Chem Res, 2014, 47: 1595–1603

    CAS  Article  Google Scholar 

  5. You J, Chen CC, Hong Z, Yoshimura K, Ohya K, Xu R, Ye S, Gao J, Li G, Yang Y. Adv Mater, 2013, 25: 3973–3978

    CAS  Article  Google Scholar 

  6. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen CC, Gao J, Li G, Yang Y. Nat Commun, 2013, 4: 1446–1455

    Article  Google Scholar 

  7. Ye L, Zhang S, Zhao W, Yao H, Hou J. Chem Mater, 2014, 26: 3603–3605

    CAS  Article  Google Scholar 

  8. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, Jiang K, Lin H, Ade H, Yan H. Nat Commun, 2014, 5: 5293–5301

    CAS  Article  Google Scholar 

  9. Chueh CC, Li CZ, Jen AKY. Energy Environ Sci, 2015, 8: 1160–1189

    CAS  Article  Google Scholar 

  10. Nguyen TL, Choi H, Ko SJ, Uddin MA, Walker B, Yum S, Jeong JE, Yun MH, Shin TJ, Hwang S, Kim JY, Woo HY. Energy Environ Sci, 2014, 7: 3040–3051

    CAS  Article  Google Scholar 

  11. Huo L, Liu T, Sun X, Cai Y, Heeger AJ, Sun Y. Adv Mater, 2015, 27: 2938–2944

    CAS  Article  Google Scholar 

  12. Choi H, Ko SJ, Kim T, Morin PO, Walker B, Lee BH, Leclerc M, Kim JY, Heeger AJ. Adv Mater, 2015, 27: 3318–3324

    CAS  Article  Google Scholar 

  13. Yusoff ARM, Kim D, Kim HP, Shneider FK, da Silva WJ, Jang J. Energy Environ Sci, 2015, 8: 303–316

    CAS  Article  Google Scholar 

  14. Hu H, Jiang K, Yang G, Liu J, Li Z, Lin H, Liu Y, Zhao J, Zhang J, Huang F, Qu Y, Ma W, Yan H. J Am Chem Soc, 2015, 137: 14149–14157

    CAS  Article  Google Scholar 

  15. Zheng Z, Zhang S, Zhang M, Zhao K, Ye L, Chen Y, Yang B, Hou J. Adv Mater, 2015, 27: 1189–1194

    CAS  Article  Google Scholar 

  16. Zhou H, Zhang Y, Mai CK, Collins SD, Bazan GC, Nguyen TQ, Heeger AJ. Adv Mater, 2015, 27: 1767–1773

    CAS  Article  Google Scholar 

  17. Chen JD, Cui C, Li YQ, Zhou L, Ou QD, Li C, Li Y, Tang JX. Adv Mater, 2015, 27: 1035–1041

    CAS  Article  Google Scholar 

  18. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, Ma W, Yan H. Nat Energy, 2016, 1: 15027

    CAS  Article  Google Scholar 

  19. Li YQ, Wang QK, Ou QD, Tang JX. Sci China Chem, 2016, 59: 422–435

    CAS  Article  Google Scholar 

  20. Zhang S, Ye L, Zhao W, Yang B, Wang Q, Hou J. Sci China Chem, 2015, 58: 248–256

    CAS  Article  Google Scholar 

  21. Chen MS, Niskala JR, Unruh DA, Chu CK, Lee OP, Fréchet JMJ. Chem Mater, 2013, 25: 4088–4096

    CAS  Article  Google Scholar 

  22. Jung M, Yoon Y, Park JH, Cha W, Kim A, Kang J, Gautam S, Seo D, Cho JH, Kim H, Choi JY, Chae KH, Kwak K, Son HJ, Ko MJ, Kim H, Lee DK, Kim JY, Choi DH, Kim BS. ACS Nano, 2014, 8: 5988–6003

    CAS  Article  Google Scholar 

  23. Lee KC, Song S, Lee J, Kim DS, Kim JY, Yang C. ChemPhysChem, 2015, 16: 1305–1314

    CAS  Article  Google Scholar 

  24. van Franeker JJ, Heintges GHL, Schaefer C, Portale G, Li W, Wienk MM, van der Schoot P, Janssen RAJ. J Am Chem Soc, 2015, 137: 11783–11794

    Article  Google Scholar 

  25. Li W, Kelchtermans M, Wienk MM, Janssen RAJ. J Mater Chem A, 2013, 1: 15150–15157

    CAS  Article  Google Scholar 

  26. Li W, Hendriks KH, Furlan A, Roelofs WSC, Wienk MM, Janssen RAJ. J Am Chem Soc, 2013, 135: 18942–18948

    CAS  Article  Google Scholar 

  27. Li W, Hendriks KH, Furlan A, Roelofs WSC, Meskers SCJ, Wienk MM, Janssen RAJ. Adv Mater, 2014, 26: 1565–1570

    CAS  Article  Google Scholar 

  28. Osaka I, Zhang R, Sauve´ G, Smilgies DM, Kowalewski T, McCullough RD. J Am Chem Soc, 2009, 131: 2521–2529

    CAS  Article  Google Scholar 

  29. Lee J, Han AR, Yu H, Shin TJ, Yang C, Oh JH. J Am Chem Soc, 2013, 135: 9540–9547

    CAS  Article  Google Scholar 

  30. Sung A, Ling MM, Tang ML, Bao Z, Locklin J. Chem Mater, 2007, 19: 2342–2351

    CAS  Article  Google Scholar 

  31. Li H, Mei J, Ayzner AL, Toney MF, Tok JBH, Bao Z. Org Electron, 2012, 13: 2450–2460

    CAS  Article  Google Scholar 

  32. Torsi L, Farinola GM, Marinelli F, Tanese MC, Omar OH, Valli L, Babudri F, Palmisano F, Zambonin PG, Naso F. Nat Mater, 2008, 7: 412–417

    CAS  Article  Google Scholar 

  33. Akkerman HB, Mannsfeld SCB, Kaushik AP, Verploegen E, Burnier L, Zoombelt AP, Saathoff JD, Hong S, Atahan-Evrenk S, Liu X, Aspuru-Guzik A, Toney MF, Clancy P, Bao Z. J Am Chem Soc, 2013, 135: 11006–11014

    CAS  Article  Google Scholar 

  34. Back JY, Yu H, Song I, Kang I, Ahn H, Shin TJ, Kwon SK, Oh JH, Kim YH. Chem Mater, 2015, 27: 1732–1739

    CAS  Article  Google Scholar 

  35. Mei J, Kim DH, Ayzner AL, Toney MF, Bao Z. J Am Chem Soc, 2011, 133: 20130–20133

    CAS  Article  Google Scholar 

  36. Lei T, Dou JH, Pei J. Adv Mater, 2012, 24: 6457–6461

    CAS  Article  Google Scholar 

  37. Zhang F, Hu Y, Schuettfort T, Di C, Gao X, Mc Neill CR, Thomsen L, Mannsfeld SCB, Yuan W, Sirringhaus H, Zhu D. J Am Chem Soc, 2013, 135: 2338–2349

    CAS  Article  Google Scholar 

  38. Zhang ZG, Li Y. Sci China Chem, 2015, 58: 192–209

    CAS  Article  Google Scholar 

  39. Mark JE. Acc Chem Res, 2004, 37: 946–953

    CAS  Article  Google Scholar 

  40. Mei J, Wu HC, Diao Y, Appleton A, Wang H, Zhou Y, Lee WY, Kurosawa T, Chen WC, Bao Z. Adv Funct Mater, 2015, 25: 3455–3462

    CAS  Article  Google Scholar 

  41. Mei J, Bao Z. Chem Mater, 2014, 26: 604–615

    CAS  Article  Google Scholar 

  42. Lee J, Han AR, Kim J, Kim Y, Oh JH, Yang C. J Am Chem Soc, 2012, 134: 20713–20721

    CAS  Article  Google Scholar 

  43. Li Y, Ko SJ, Park SY, Choi H, Nguyen TL, Uddin MA, Kim T, Hwang S, Kim JY, Woo HY. J Mater Chem A, 2016, 4: 9967–9976

    CAS  Article  Google Scholar 

  44. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bässler H, Porsch M, Daub J. Adv Mater, 1995, 7: 551–554

    CAS  Article  Google Scholar 

  45. Liu X, Hsu BBY, Sun Y, Mai CK, Heeger AJ, Bazan GC. J Am Chem Soc, 2014, 136: 16144–16147

    CAS  Article  Google Scholar 

  46. Zhang S, Ye L, Wang Q, Li Z, Guo X, Huo Li, Fan H, Hou JH. J Phys Chem C, 2013, 17: 9550–9557

    Article  Google Scholar 

  47. Zhang S, Yang B, Liu D, Zhang H, Zhao W, Wang Q, He C, Hou J. Macromolecules, 2016, 49: 120–126

    CAS  Article  Google Scholar 

  48. Guo X, Zhou N, Lou SJ, Smith J, Tice DB, Hennek JW, Ortiz RP, Navarrete JTL, Li S, Strzalka J, Chen LX, Chang RPH, Facchetti A, Marks TJ. Nat Photon, 2013, 7: 825–833

    CAS  Article  Google Scholar 

  49. Uddin MA, Lee TH, Xu S, Park SY, Kim T, Song S, Nguyen TL, Ko S, Hwang S, Kim JY, Woo HY. Chem Mater, 2015, 27: 5997–6007

    CAS  Article  Google Scholar 

  50. Li Y, Lee TH, Park SY, Uddin MA, Kim T, Hwang S, Kim JY, Woo HY. Polym Chem, 2016, 7: 4638–4646

    CAS  Article  Google Scholar 

  51. Kim G, Song S, Lee J, Kim T, Lee TH, Walker B, Kim JY, Yang C. Adv Energy Mater, 2015, 5: 1500844–1500853

    Article  Google Scholar 

  52. Dennler G, Scharber MC, Brabec CJ. Adv Mater, 2009, 21: 1323–1338

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (2015R1A2A1A15055605, 2015M1A2A2057506, 2015R1D1A1A09056905, 2016M1A2A2940911).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jin Young Kim or Han Young Woo.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Song, S., Park, S.Y. et al. Semi-crystalline photovoltaic polymers with siloxane-terminated hybrid side-chains. Sci. China Chem. 60, 528–536 (2017). https://doi.org/10.1007/s11426-016-0520-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0520-6

Keywords

  • siloxane side-chain
  • fluorine substitution
  • semi-crystalline
  • charge transport