Skip to main content
Log in

Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts

Science China Chemistry Aims and scope Submit manuscript

Abstract

2,5-Furandicarboxylic (FDCA) is a potential substitute for petroleum-derived terephthalic acid, and aerobic oxidation of 5-hydroxymethylfurfural (HMF) provides an efficient route to synthesis of FDCA. On an activated carbon supported ruthenium (Ru/C) catalyst (with 5 wt% Ru loading), HMF was readily oxidized to FDCA in a high yield of 97.3% at 383 K and 1.0 MPa O2 in the presence of Mg(OH)2 as base additive. Ru/C was superior to Pt/C and Pd/C and also other supported Ru catalysts with similar sizes of metal nanoparticles (1–2 nm). The Ru/C catalysts were stable and recyclable, and their efficiency in the formation of FDCA increased with Ru loadings examined in the range of 0.5 wt%–5.0 wt%. Based on the kinetic studies including the effects of reaction time, reaction temperature, O2 pressure, on the oxidation of HMF to FDCA on Ru/C, it was confirmed that the oxidation of HMF to FDCA proceeds involving the primary oxidation of HMF to 2,5-diformylfuran (DFF) intermediate, and its sequential oxidation to 5-formyl-2-furancarboxylic acid (FFCA) and ultimately to FDCA, in which the oxidation of FFCA to FDCA is the rate-determining step and dictates the overall formation rate of FDCA. This study provides directions towards efficient synthesis of FDCA from HMF, for example, by designing novel catalysts more efficient for the involved oxidation step of FFCA to FDCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Chheda JN, Huber GW, Dumesic JA. Angew Chem Int Ed, 2007, 46: 7164–7183

    Article  CAS  Google Scholar 

  2. Corma A, Iborra S, Velty A. Chem Rev, 2007, 107: 2411–2502

    Article  CAS  Google Scholar 

  3. Zhang X, Murria P, Jiang Y, Xiao W, Kenttämaa HI, Abu-Omar MM, Mosier NS. Green Chem, 2016, 18: 5219–5229

    Article  CAS  Google Scholar 

  4. Qi X, Watanabe M, Aida TM, Smith Jr RL. Green Chem, 2008, 10: 799–805

    Article  CAS  Google Scholar 

  5. Yang F, Liu Q, Yue M, Bai X, Du Y. Chem Commun, 2011, 47: 4469–4471

    Article  CAS  Google Scholar 

  6. Román-Leshkov Y, Chheda JN, Dumesic JA. Science, 2006, 312: 1933–1937

    Article  Google Scholar 

  7. Amarasekara AS, Green D, Williams LTD. Eur Polymer J, 2009, 45: 595–598

    Article  CAS  Google Scholar 

  8. Gandini A, Silvestre AJD, Neto CP, Sousa AF, Gomes M. J Polym Sci A Polym Chem, 2009, 47: 295–298

    Article  CAS  Google Scholar 

  9. Moreau C, Belgacem MN, Gandini A. Chem Inform, 2004, 35: 11–30

    Google Scholar 

  10. Partenheimer W, Grushin VV. Adv Synth Catal, 2001, 343: 102–111

    Article  CAS  Google Scholar 

  11. Sahu R, Dhepe PL. Reac Kinet Mech Cat, 2014, 112: 173–187

    Article  CAS  Google Scholar 

  12. Miao Z, Wu T, Li J, Yi T, Zhang Y, Yang X. RSC Adv, 2015, 5: 19823–19829

    Article  CAS  Google Scholar 

  13. Verdeguer P, Merat N, Gaset A. J Mol Catal, 1993, 85: 327–344

    Article  CAS  Google Scholar 

  14. Casanova O, Iborra S, Corma A. ChemSusChem, 2009, 2: 1138–1144

    Article  CAS  Google Scholar 

  15. Siyo B, Schneider M, Radnik J, Pohl MM, Langer P, Steinfeldt N. Appl Catal A-Gen, 2014, 478: 107–116

    Article  CAS  Google Scholar 

  16. Mei N, Liu B, Zheng J, Lv K, Tang D, Zhang Z. Catal Sci Technol, 2015, 5: 3194–3202

    Article  CAS  Google Scholar 

  17. Ait Rass H, Essayem N, Besson M. Green Chem, 2013, 15: 2240–2251

    Article  CAS  Google Scholar 

  18. Pasini T, Piccinini M, Blosi M, Bonelli R, Albonetti S, Dimitratos N, Lopez-Sanchez JA, Sankar M, He Q, Kiely CJ, Hutchings GJ, Cavani F. Green Chem, 2011, 13: 2091

    Article  CAS  Google Scholar 

  19. Gupta NK, Nishimura S, Takagaki A, Ebitani K. Green Chem, 2011, 13: 824–827

    Article  CAS  Google Scholar 

  20. Gorbanev YY, Kegnæs S, Riisager A. Catal Lett, 2011, 141: 1752–1760

    Article  CAS  Google Scholar 

  21. Artz J, Palkovits R. ChemSusChem, 2015, 8: 3832–3838

    Article  CAS  Google Scholar 

  22. Yi G, Teong SP, Zhang Y. Green Chem, 2016, 18: 979–983

    Article  CAS  Google Scholar 

  23. Nie J, Xie J, Liu H. J Catal, 2013, 301: 83–91

    Article  CAS  Google Scholar 

  24. Nie J, Xie J, Liu H. Chin J Catal, 2013, 34: 871–875

    Article  CAS  Google Scholar 

  25. Xie J, Nie J, Liu H. Chin J Catal, 2014, 35: 937–944

    Article  CAS  Google Scholar 

  26. Davis SE, Zope BN, Davis RJ. Green Chem, 2012, 14: 143–147

    Article  CAS  Google Scholar 

  27. Nie J, Liu H. Pure Appl Chem, 2011, 84: 765–777

    Article  Google Scholar 

  28. Pupovac K, Palkovits R. ChemSusChem, 2013, 6: 2103–2110

    Article  CAS  Google Scholar 

  29. Kerdi F, Ait Rass H, Pinel C, Besson M, Peru G, Leger B, Rio S, Monflier E, Ponchel A. Appl Catal A-Gen, 2015, 506: 206–219

    Article  CAS  Google Scholar 

  30. Davis SE, Houk LR, Tamargo EC, Datye AK, Davis RJ. Catal Today, 2011, 160: 55–60

    Article  CAS  Google Scholar 

  31. Zope BN, Davis SE, Davis RJ. Top Catal, 2012, 55: 24–32

    Article  CAS  Google Scholar 

  32. Albonetti S, Lolli A, Morandi V, Migliori A, Lucarelli C, Cavani F. Appl Catal B-Environ, 2015, 163: 520–530

    Article  CAS  Google Scholar 

  33. Vuyyuru KR, Strasser P. Catal Today, 2012, 195: 144–154

    Article  CAS  Google Scholar 

  34. Chadderdon DJ, Xin L, Qi J, Qiu Y, Krishna P, More KL, Li W. Green Chem, 2014, 16: 3778–3786

    Article  CAS  Google Scholar 

  35. Wan X, Zhou C, Chen J, Deng W, Zhang Q, Yang Y, Wang Y. ACS Catal, 2014, 4: 2175–2185

    Article  CAS  Google Scholar 

  36. Zhou C, Deng W, Wan X, Zhang Q, Yang Y, Wang Y. ChemCatChem, 2015, 7: 2853–2863

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21373019, 21433001, 21690081).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoning Zong or Haichao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, L., Zhao, J., Du, Z. et al. Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid on Ru/C catalysts. Sci. China Chem. 60, 950–957 (2017). https://doi.org/10.1007/s11426-016-0489-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-016-0489-3

Keywords

Navigation