Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Rapid proton diffusion in hydroxyl functionalized imidazolium ionic liquids

Abstract

There is considerable interest in using ionic liquids (ILs) as protic electrolytes. However, the reported proton transfer rate in ILs is quite slow. In this study, we report functionalizing imidazolium ILs with alcohol hydroxyls, aiming at constructing hydrogen bonding networks in the electrolyte, can stimulate fast proton hopping transfer. For demonstration, the diffusion of proton and Cl in 1-(3-hydroxypropyl)-3-methylimidazolium tetrafluoroboride (C3OHmimBF4) were studied using cyclic voltammetry and potentiostatic method at 30 °C. The diffusion coefficient of proton is about one order of magnitude higher than that of Cl− in the same electrolyte, and about 5 times that of proton in the non-hydydroxyl 1-(butyl)-3-methylimidazolium tetrafluoroboride (BmimBF4) when normalized to the diffusion coefficients of Cl− in respective ILs. In the meantime, 1H NMR spectra revealed a strong hydrogen bonding interaction between proton and C3OHmimBF4 which is absent between proton and BmimBF4, thus the significantly higher diffusion coefficient of proton in C3OHmimBF4 may suggest the formation of effective hydrogen bonding networks, enabling rapid proton hopping via the Grotthuss mechanism.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Nat Mater, 2009, 8: 621–629

  2. 2

    Wang MY, Ma R, He LN. Sci China Chem, 2016, 59: 507–516

  3. 3

    Zhang QB, Hua YX, Wang R. Sci China Chem, 2014, 57: 397–401

  4. 4

    Yan Y, Yin YX, Guo YG, Wan LJ. Sci China Chem, 2014, 57: 1564–1569

  5. 5

    Zhang L, Dong K, Chen S, Zhang S. Sci China Chem, 2016, 59: 547–550

  6. 6

    Li Q, Jiang J, Li G, Zhao W, Zhao X, Mu T. Sci China Chem, 2016, 59: 571–577

  7. 7

    Bhatt AI, Bond AM. J Electroanal Chem, 2008, 619-620: 1–10

  8. 8

    Lloyd D, Vainikka T, Murtomäki L, Kontturi K, Ahlberg E. Electrochim Acta, 2011, 56: 4942–4948

  9. 9

    Yang YY, Xu CY, Hua YX, Li J, Li FY, Jie YF. Int J Hydrogen Energy, 2015, 10: 1979–1991

  10. 10

    Su C, An M, Yang P, Gu H, Guo X. Appl Surface Sci, 2010, 256: 4888–4893

  11. 11

    Ejigu A, Lovelock KRJ, Licence P, Walsh DA. Electrochim Acta, 2011, 56: 10313–10320

  12. 12

    Bentley CL, Bond AM, Hollenkamp AF, Mahon PJ, Zhang J. J Phys Chem C, 2014, 118: 22439–22449

  13. 13

    Zhang Q, Hua Y, Wang R. Electrochim Acta, 2013, 105: 419–423

  14. 14

    Sun H, Yu L, Jin X, Hu X, Wang D, Chen GZ. Electrochem Commun, 2005, 7: 685–691

  15. 15

    Villagrán C, Banks CE, Hardacre C, Compton RG. Anal Chem, 2004, 76: 1998–2003

  16. 16

    Yu L, Jin X, Chen GZ. J Electroanal Chem, 2013, 688: 371–378

  17. 17

    Allen GD, Buzzeo MC, Villagrán C, Hardacre C, Compton RG. J Electroanal Chem, 2005, 575: 311–320

  18. 18

    Cha QX. Introduction to Kinetics of Electrode Processes (in Chinese). 3rd Ed. Beijing: Academic Press, 2002

  19. 19

    Meng Y, Aldous L, Belding SR, Compton RG. Chem Commun, 2012, 48: 5572–5574

  20. 20

    Meng Y, Norman S, Hardacre C, Compton RG. Phys Chem Chem Phys, 2013, 15: 2031–2036

  21. 21

    Meng Y, Aldous L, Belding SR, Compton RG. Phys Chem Chem Phys, 2012, 14: 5222–5228

  22. 22

    Li Q, Pan C, Jensen JO, Noyé P, Bjerrum NJ. Chem Mater, 2007, 19: 350–352

  23. 23

    Nakamoto H, Watanabe M. Chem Commun, 2007, 2539–2541

  24. 24

    Li Y, Shi Y, Mehio N, Tan M, Wang Z, Hu X, Chen GZ, Dai S, Jin X. Appl Energy, 2016, 175: 451–458

  25. 25

    Lee SY, Ogawa A, Kanno M, Nakamoto H, Yasuda T, Watanabe M. J Am Chem Soc, 2010, 132: 9764–9773

  26. 26

    Kreuer K. Solid State Ion, 1997, 94: 55–62

  27. 27

    Yoshizawa-Fujita M, Kousa Y, Kidena K, Ohira A, Takeoka Y, Rikukawa M. Phys Chem Chem Phys, 2011, 13: 13427–13432

  28. 28

    Wei X, Yu L, Wang D, Jin X, Chen GZ. Green Chem, 2008, 10: 296–305

  29. 29

    Wei X, Yu L, Jin X, Wang D, Chen GZ. Adv Mater, 2009, 21: 776–780

  30. 30

    Zhao C, Bond AM, Lu X. Anal Chem, 2012, 84: 2784–2791

  31. 31

    Ciocirlan O, Croitoru O, Iulian O. J Chem Eng Data, 2011, 56: 1526–1534

  32. 32

    Huang Q, Li Y, Jin X, Zhao D, Chen GZ. Energy Environ Sci, 2011, 4: 2125–2133

  33. 33

    Winlove CP, Parker KH, Oxenham RKC. J Electroanal Chem, 1984, 170: 293–304

  34. 34

    Mele A, Tran CD, De Paoli Lacerda SH. Angew Chem, 2003, 115: 4500–4502

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21173161, 21673164), and the Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.

Author information

Correspondence to Xianbo Jin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hu, Y., Chen, G. et al. Rapid proton diffusion in hydroxyl functionalized imidazolium ionic liquids. Sci. China Chem. 60, 734–739 (2017). https://doi.org/10.1007/s11426-016-0459-2

Download citation

Keywords

  • ionic liquids
  • proton transfer
  • diffusion coefficients
  • hydroxyl group
  • hydrogen bonding networks