Science China Chemistry

, Volume 60, Issue 3, pp 338–352 | Cite as

Giant molecules: where chemistry, physics, and bio-science meet

Feature Articles

Abstract

This feature article focuses on the recent development of giant molecules, which has emerged at the interface among chemistry, physics, and bio-science. Their molecular designs are inspired by natural polymers like proteins and are modularly constructed from molecular nanoparticle building blocks via sequential “click” chemistry. Most important molecular parameters such as topology, composition, and molecular weight can be precisely controlled. Their hierarchical assembly reveals many features reminiscent of both small molecules and proteins yet unusual for conventional synthetic polymers. These features are summarized and compared along with synthetic polymers and proteins. Specifically, examples are given in each category of giant molecules to illustrate the characteristics of their hierarchical assembly across different length, time and energy scales. The idea of “artificial domain” is presented in analogy to the structural domains in proteins. By doing so, we aim to develop a rational and modular approach toward functional materials. The factors that dominate the materials functions are discussed with respect to the precision and dynamics of the assembly. The complexity of structure-function relationship is acknowledged, which suggests that there is still a long way to go toward the convergence of synthetic polymers and biopolymers.

Keywords

giant molecules molecular nanoparticles protein protein engineering domains 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21674003, 21474003, 91427304), the National High Technology Research and Development Program of China (2015AA020941), and the National Science Foundation of US (DMR-0906898, DMR-1409972).

References

  1. 1.
    Muller AHE, Matyjaszewski K. Controlled and Living Polymerizations: Methods and Materials. Weinheim: Wiley-VCH, 2009CrossRefGoogle Scholar
  2. 2.
    Ober CK, Cheng SZD, Hammond PT, Muthukumar M, Reichmanis E, Wooley KL, Lodge TP. Macromolecules, 2009, 42: 465–471CrossRefGoogle Scholar
  3. 3.
    National Research Council (U.S.). Committee on Biomolecular Materials and Processes Inspired by Biology: From Molecules to Materials to Machines. Washington, D.C.: National Academies Press, 2008Google Scholar
  4. 4.
    Zhang WB, Yu X, Wang CL, Sun HJ, Hsieh IF, Li Y, Dong XH, Yue K, van Horn R, Cheng SZD. Macromolecules, 2014, 47: 1221–1239CrossRefGoogle Scholar
  5. 5.
    Zhang WB, Cheng SZD. Chin J Polym Sci, 2015, 33: 797–814CrossRefGoogle Scholar
  6. 6.
    Zhang WB, Wang XM, Wang XW, Liu D, Han SY, Cheng SZD. Prog Chem, 2015, 27: 1333–1342Google Scholar
  7. 7.
    Zhang WB, Chen EQ, Wang J, Zhang W, Wang LG, Cheng SZD. Acta Phys Sin, 2016, 65: 183601Google Scholar
  8. 8.
    Odian GG. Principles of Polymerization. Hoboken, NJ: Wiley-Interscience, 2004CrossRefGoogle Scholar
  9. 9.
    Whitford D. Proteins: Structure and Function. Hoboken, NJ: J. Wiley & Sons, 2005Google Scholar
  10. 10.
    Cesareni G. Modular Protein Domains. Weinheim: Wiley-VCH, 2005Google Scholar
  11. 11.
    Matyjaszewski K. Science, 2011, 333: 1104–1105CrossRefGoogle Scholar
  12. 12.
    Wang L, Xie J, Schultz PG. Annu Rev Biophys Biomol Struct, 2006, 35: 225–249CrossRefGoogle Scholar
  13. 13.
    Ngo JT, Tirrell DA. Acc Chem Res, 2011, 44: 677–685CrossRefGoogle Scholar
  14. 14.
    Kulkarni C, Kinzer-Ursem TL, Tirrell DA. ChemBioChem, 2013, 14: 1958–1962CrossRefGoogle Scholar
  15. 15.
    Varki A. Essentials of Glycobiology. Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press, 2009Google Scholar
  16. 16.
    Johnson JA, Lu YY, van Deventer JA, Tirrell DA. Curr Opin Chem Biol, 2010, 14: 774–780CrossRefGoogle Scholar
  17. 17.
    Heal WP, Wright MH, Thinon E, Tate EW. Nat Protoc, 2011, 7: 105–117CrossRefGoogle Scholar
  18. 18.
    Khidekel N, Arndt S, Lamarre-Vincent N, Lippert A, Poulin-Kerstien KG, Ramakrishnan B, Qasba PK, Hsieh-Wilson LC. J Am Chem Soc, 2003, 125: 16162–16163CrossRefGoogle Scholar
  19. 19.
    Bird A. Nature, 2007, 447: 396–398CrossRefGoogle Scholar
  20. 20.
    Roundtree IA, He C. Curr Opin Chem Biol, 2016, 30: 46–51CrossRefGoogle Scholar
  21. 21.
    Mayer C, McInroy GR, Murat P, van Delft P, Balasubramanian S. Angew Chem Int Ed, 2016, 55: 11144–11148CrossRefGoogle Scholar
  22. 22.
    Blaxter M. Science, 2010, 330: 1758–1759CrossRefGoogle Scholar
  23. 23.
    Roy RK, Meszynska A, Laure C, Charles L, Verchin C, Lutz JF. Nat Commun, 2015, 6: 7237CrossRefGoogle Scholar
  24. 24.
    Mutlu H, Lutz JF. Angew Chem Int Ed, 2014, 53: 13010–13019CrossRefGoogle Scholar
  25. 25.
    Arnold FH. Acc Chem Res, 1998, 31: 125–131CrossRefGoogle Scholar
  26. 26.
    Yokobayashi Y, Weiss R, Arnold FH. Proc Natl Acad Sci USA, 2002, 99: 16587–16591CrossRefGoogle Scholar
  27. 27.
    Kastner MA. Phys Today, 1993, 46: 24–31CrossRefGoogle Scholar
  28. 28.
    Luo Z, Castleman AW. Acc Chem Res, 2014, 47: 2931–2940CrossRefGoogle Scholar
  29. 29.
    Tomalia DA, Jensen A. Periodic patterns, relationships and categories of well-defined nanoscale building blocks. National Science Foundation Workshop Report, 2007Google Scholar
  30. 30.
    Roy X, Lee CH, Crowther AC, Schenck CL, Besara T, Lalancette RA, Siegrist T, Stephens PW, Brus LE, Kim P, Steigerwald ML, Nuckolls C. Science, 2013, 341: 157–160CrossRefGoogle Scholar
  31. 31.
    Nimmala PR, Knoppe S, Jupally VR, Delcamp JH, Aikens CM, Dass A. J Phys Chem B, 2014, 118: 14157–14167CrossRefGoogle Scholar
  32. 32.
    Chujo Y, Tanaka K. Bull Chem Soc Jpn, 2015, 88: 633–643CrossRefGoogle Scholar
  33. 33.
    Yu X, Zhong S, Li X, Tu Y, Yang S, van Horn RM, Ni C, Pochan DJ, Quirk RP, Wesdemiotis C, Zhang WB, Cheng SZD. J Am Chem Soc, 2010, 132: 16741–16744CrossRefGoogle Scholar
  34. 34.
    Yu X, Li Y, Dong XH, Yue K, Lin Z, Feng X, Huang M, Zhang WB, Cheng SZD. J Polym Sci Part B-Polym Phys, 2014, 52: 1309–1325CrossRefGoogle Scholar
  35. 35.
    Yue K, Liu C, Guo K, Wu K, Dong XH, Liu H, Huang M, Wesdemiotis C, Cheng SZD, Zhang WB. Polym Chem, 2013, 4: 1056–1067CrossRefGoogle Scholar
  36. 36.
    Velonia K, Rowan AE, Nolte RJM. J Am Chem Soc, 2002, 124: 4224–4225CrossRefGoogle Scholar
  37. 37.
    Lawrence J, Lee SH, Abdilla A, Nothling MD, Ren JM, Knight AS, Fleischmann C, Li Y, Abrams AS, Schmidt BVKJ, Hawker MC, Connal LA, McGrath AJ, Clark PG, Gutekunst WR, Hawker CJ. J Am Chem Soc, 2016, 138: 6306–6310CrossRefGoogle Scholar
  38. 38.
    Glotzer SC, Solomon MJ. Nat Mater, 2007, 6: 557–562CrossRefGoogle Scholar
  39. 39.
    Damasceno PF, Engel M, Glotzer SC. Science, 2012, 337: 453–457CrossRefGoogle Scholar
  40. 40.
    Date RW, Bruce DW. J Am Chem Soc, 2003, 125: 9012–9013CrossRefGoogle Scholar
  41. 41.
    Sun HJ, Tu Y, Wang CL, van Horn RM, Tsai CC, Graham MJ, Sun B, Lotz B, Zhang WB, Cheng SZD. J Mater Chem, 2011, 21: 14240–14247CrossRefGoogle Scholar
  42. 42.
    Teng FA, Cao Y, Qi YJ, Huang M, Han ZW, Cheng SZD, Zhang WB, Li H. Chem Asian J, 2013, 8: 1223–1231CrossRefGoogle Scholar
  43. 43.
    Wang CL, Zhang WB, van Horn RM, Tu Y, Gong X, Cheng SZD, Sun Y, Tong M, Seo J, Hsu BBY, Heeger AJ. Adv Mater, 2011, 23: 2951–2956CrossRefGoogle Scholar
  44. 44.
    Wang CL, Zhang WB, Hsu CH, Sun HJ, van Horn RM, Tu Y, Anokhin DV, Ivanov DA, Cheng SZD. Soft Matter, 2011, 7: 6135–6143CrossRefGoogle Scholar
  45. 45.
    Wang CL, Zhang WB, Sun HJ, van Horn RM, Kulkarni RR, Tsai CC, Hsu CS, Lotz B, Gong X, Cheng SZD. Adv Energy Mater, 2012, 2: 1375–1382CrossRefGoogle Scholar
  46. 46.
    Baffreau J, Ordronneau L, Leroy-Lhez S, Hudhomme P. J Org Chem, 2008, 73: 6142–6147CrossRefGoogle Scholar
  47. 47.
    Liang WW, Huang CF, Wu KY, Wu SL, Chang ST, Cheng YJ, Wang CL. Chem Sci, 2016, 7: 2768–2774CrossRefGoogle Scholar
  48. 48.
    Zhang MY, Gu KH, Zhou Y, Zhou S, Fan XH, Shen Z. Chem Commun, 2016, 52: 3923–3926CrossRefGoogle Scholar
  49. 49.
    Ren X, Sun B, Tsai CC, Tu Y, Leng S, Li K, Kang Z, Horn RMV, Li X, Zhu M, Wesdemiotis C, Zhang WB, Cheng SZD. J Phys Chem B, 2010, 114: 4802–4810CrossRefGoogle Scholar
  50. 50.
    Dahl JE, Liu SG, Carlson RMK. Science, 2003, 299: 96–99CrossRefGoogle Scholar
  51. 51.
    Claridge SA, Castleman AW, Khanna SN, Murray CB, Sen A, Weiss PS. ACS Nano, 2009, 3: 244–255CrossRefGoogle Scholar
  52. 52.
    Huang M, Hsu CH, Wang J, Mei S, Dong X, Li Y, Li M, Liu H, Zhang W, Aida T, Zhang WB, Yue K, Cheng SZD. Science, 2015, 348: 424–428CrossRefGoogle Scholar
  53. 53.
    De Graef M, Mchenry ME. Structure of Materials: an Introduction to Crystallography, Diffraction and Symmetry. 2nd Ed. Cambridge: Cambridge University Press, 2012CrossRefGoogle Scholar
  54. 54.
    Frank FC, Kasper JS. Acta Cryst, 1958, 11: 184–190CrossRefGoogle Scholar
  55. 55.
    Frank FC, Kasper JS. Acta Cryst, 1959, 12: 483–499CrossRefGoogle Scholar
  56. 56.
    Lee S, Bluemle MJ, Bates FS. Science, 2010, 330: 349–353CrossRefGoogle Scholar
  57. 57.
    Ungar G, Zeng X. Soft Matter, 2005, 1: 95CrossRefGoogle Scholar
  58. 58.
    Lee S, Leighton C, Bates FS. Proc Natl Acad Sci USA, 2014, 111: 17723–17731CrossRefGoogle Scholar
  59. 59.
    Yue K, Liu C, Guo K, Yu X, Huang M, Li Y, Wesdemiotis C, Cheng SZD, Zhang WB. Macromolecules, 2012, 45: 8126–8134CrossRefGoogle Scholar
  60. 60.
    Zhang WB, Li Y, Li X, Dong X, Yu X, Wang CL, Wesdemiotis C, Quirk RP, Cheng SZD. Macromolecules, 2011, 44: 2589–2596CrossRefGoogle Scholar
  61. 61.
    Hirsch A, Brettreich M. Fullerenes: Chemistry and Reactions. Weinheim, Great Britain: Wiley-VCH, 2005Google Scholar
  62. 62.
    Han SY, Wang XM, Shao Y, Guo QY, Li Y, Zhang WB. Chem Eur J, 2016, 22: 6397–6403CrossRefGoogle Scholar
  63. 63.
    Wang XM, Guo QY, Han SY, Wang JY, Han D, Fu Q, Zhang WB. Chem Eur J, 2015, 21: 15246–15255CrossRefGoogle Scholar
  64. 64.
    Oguri N, Egawa Y, Takeda N, Unno M. Angew Chem Int Ed, 2016, 55: 9336–9339CrossRefGoogle Scholar
  65. 65.
    Blázquez-Moraleja A, Eugenia Pérez-Ojeda M, Suárez JR, Luisa Jimeno M, Chiara JL. Chem Commun, 2016, 52: 5792–5795CrossRefGoogle Scholar
  66. 66.
    Barner-Kowollik C, Du Prez FE, Espeel P, Hawker CJ, Junkers T, Schlaad H, van Camp W. Angew Chem Int Ed, 2011, 50: 60–62CrossRefGoogle Scholar
  67. 67.
    Kolb HC, Finn MG, Sharpless KB. Angew Chem Int Ed, 2001, 40: 2004–2021CrossRefGoogle Scholar
  68. 68.
    Su H, Zheng J, Wang Z, Lin F, Feng X, Dong XH, Becker ML, Cheng SZD, Zhang WB, Li Y. ACS Macro Lett, 2013, 2: 645–650CrossRefGoogle Scholar
  69. 69.
    Li Y, Wang Z, Zheng J, Su H, Lin F, Guo K, Feng X, Wesdemiotis C, Becker ML, Cheng SZD, Zhang WB. ACS Macro Lett, 2013, 2: 1026–1032CrossRefGoogle Scholar
  70. 70.
    Iwai H, Lingel A, Pluckthun A. J Biol Chem, 2001, 276: 16548–16554CrossRefGoogle Scholar
  71. 71.
    Stevens AJ, Brown ZZ, Shah NH, Sekar G, Cowburn D, Muir TW. J Am Chem Soc, 2016, 138: 2162–2165CrossRefGoogle Scholar
  72. 72.
    Antos JM, Popp MWL, Ernst R, Chew GL, Spooner E, Ploegh HL. J Biol Chem, 2009, 284: 16028–16036CrossRefGoogle Scholar
  73. 73.
    Wu Z, Guo X, Guo Z. Chem Commun, 2011, 47: 9218–9220CrossRefGoogle Scholar
  74. 74.
    Parthasarathy R, Subramanian S, Boder ET. Bioconjug Chem, 2007, 18: 469–476CrossRefGoogle Scholar
  75. 75.
    Zakeri B, Howarth M. J Am Chem Soc, 2010, 132: 4526–4527CrossRefGoogle Scholar
  76. 76.
    Zakeri B, Fierer JO, Celik E, Chittock EC, Schwarz-Linek U, Moy VT, Howarth M. Proc Natl Acad Sci USA, 2012, 109: e690–E697CrossRefGoogle Scholar
  77. 77.
    Veggiani G, Nakamura T, Brenner MD, Gayet RV, Yan J, Robinson CV, Howarth M. Proc Natl Acad Sci USA, 2016, 113: 1202–1207CrossRefGoogle Scholar
  78. 78.
    Wang XW, Zhang WB. Angew Chem Int Ed, 2016, 55: 3442–3446CrossRefGoogle Scholar
  79. 79.
    Zhang WB, Sun F, Tirrell DA, Arnold FH. J Am Chem Soc, 2013, 135: 13988–13997CrossRefGoogle Scholar
  80. 80.
    Fierer JO, Veggiani G, Howarth M. Proc Natl Acad Sci USA, 2014, 111: e1176–E1181CrossRefGoogle Scholar
  81. 81.
    Feynman RP. Eng Sci, 1960, 23: 22–36Google Scholar
  82. 82.
    Yu X, Yue K, Hsieh IF, Li Y, Dong XH, Liu C, Xin Y, Wang HF, Shi AC, Newkome GR, Ho RM, Chen EQ, Zhang WB, Cheng SZD. Proc Natl Acad Sci USA, 2013, 110: 10078–10083CrossRefGoogle Scholar
  83. 83.
    Ni B, Huang M, Chen Z, Chen Y, Hsu CH, Li Y, Pochan D, Zhang WB, Cheng SZD, Dong XH. J Am Chem Soc, 2015, 137: 1392–1395CrossRefGoogle Scholar
  84. 84.
    Zhang W, Huang M, Su H, Zhang S, Yue K, Dong XH, Li X, Liu H, Zhang S, Wesdemiotis C, Lotz B, Zhang WB, Li Y, Cheng SZD. ACS Cent Sci, 2016, 2: 48–54CrossRefGoogle Scholar
  85. 85.
    Dong XH, Ni B, Huang M, Hsu CH, Bai R, Zhang WB, Shi AC, Cheng SZD. Angew Chem Int Ed, 2016, 55: 2459–2463CrossRefGoogle Scholar
  86. 86.
    Hsu CH, Dong XH, Lin Z, Ni B, Lu P, Jiang Z, Tian D, Shi AC, Thomas EL, Cheng SZD. ACS Nano, 2016, 10: 919–929CrossRefGoogle Scholar
  87. 87.
    Li Y, Zhang WB, Hsieh IF, Zhang G, Cao Y, Li X, Wesdemiotis C, Lotz B, Xiong H, Cheng SZD. J Am Chem Soc, 2011, 133: 10712–10715CrossRefGoogle Scholar
  88. 88.
    Lin MC, Hsu CH, Sun HJ, Wang CL, Zhang WB, Li Y, Chen HL, Cheng SZD. Polymer, 2014, 55: 4514–4520CrossRefGoogle Scholar
  89. 89.
    Liu H, Hsu CH, Lin Z, Shan W, Wang J, Jiang J, Huang M, Lotz B, Yu X, Zhang WB, Yue K, Cheng SZD. J Am Chem Soc, 2014, 136: 10691–10699CrossRefGoogle Scholar
  90. 90.
    Liu H, Luo J, Shan W, Guo D, Wang J, Hsu CH, Huang M, Zhang W, Lotz B, Zhang WB, Liu T, Yue K, Cheng SZD. ACS Nano, 2016, 10: 6585–6596CrossRefGoogle Scholar
  91. 91.
    Auyeung E, Li TING, Senesi AJ, Schmucker AL, Pals BC, de la Cruz MO, Mirkin CA. Nature, 2013, 505: 73–77CrossRefGoogle Scholar
  92. 92.
    Xiong H, Sfeir MY, Gang O. Nano Lett, 2010, 10: 4456–4462CrossRefGoogle Scholar
  93. 93.
    Lu F, Yager KG, Zhang Y, Xin H, Gang O. Nat Commun, 2015, 6: 6912CrossRefGoogle Scholar
  94. 94.
    Williams GA, Ishige R, Cromwell OR, Chung J, Takahara A, Guan Z. Adv Mater, 2015, 27: 3934–3941CrossRefGoogle Scholar
  95. 95.
    Lin Z, Lu P, Hsu CH, Sun J, Zhou Y, Huang M, Yue K, Ni B, Dong XH, Li X, Zhang WB, Yu X, Cheng SZD. Macromolecules, 2015, 48: 5496–5503CrossRefGoogle Scholar
  96. 96.
    Dong XH, Lu X, Ni B, Chen Z, Yue K, Li Y, Rong L, Koga T, Hsiao BS, Newkome GR, Shi AC, Zhang WB, Cheng SZD. Soft Matter, 2014, 10: 3200–3208CrossRefGoogle Scholar
  97. 97.
    Wu K, Huang M, Yue K, Liu C, Lin Z, Liu H, Zhang W, Hsu CH, Shi AC, Zhang WB, Cheng SZD. Macromolecules, 2014, 47: 4622–4633CrossRefGoogle Scholar
  98. 98.
    Lam CN, Kim M, Thomas CS, Chang D, Sanoja GE, Okwara CU, Olsen BD. Biomacromolecules, 2014, 15: 1248–1258CrossRefGoogle Scholar
  99. 99.
    Qin G, Perez PM, Mills CE, Olsen BD. Biomacromolecules, 2016, 17: 928–934CrossRefGoogle Scholar
  100. 100.
    Zhou H, Li J, Chua MH, Yan H, Ye Q, Song J, Lin TT, Tang BZ, Xu J. Chem Commun, 2016, 52: 12478–12481CrossRefGoogle Scholar
  101. 101.
    Lin Z, Lu P, Hsu CH, Yue K, Dong XH, Liu H, Guo K, Wesdemiotis C, Zhang WB, Yu X, Cheng SZD. Chem Eur J, 2014, 20: 11630–11635CrossRefGoogle Scholar
  102. 102.
    Dong XH, Hsu CH, Li Y, Liu H, Wang J, Huang M, Yue K, Sun HJ, Wang CL, Yu X, Zhang WB, Lotz B, Cheng SZD. Adv Polym Sci, 2016, doi: 10.1007/1012_2015_1343Google Scholar
  103. 103.
    Habchi J, Tompa P, Longhi S, Uversky VN. Chem Rev, 2014, 114: 6561–6588CrossRefGoogle Scholar
  104. 104.
    Tompa P. Trends Biochem Sci, 2002, 27: 527–533CrossRefGoogle Scholar
  105. 105.
    Wang Y, Lin HX, Chen L, Ding SY, Lei ZC, Liu DY, Cao XY, Liang HJ, Jiang YB, Tian ZQ. Chem Soc Rev, 2014, 43: 399–411CrossRefGoogle Scholar
  106. 106.
    Wang Y, Lin HX, Ding SY, Liu DY, Chen L, Lei ZC, Fan FR, Tian ZQ. Sci Sin Chim, 2012, 42: 525CrossRefGoogle Scholar
  107. 107.
    Texter J, Tirrell M. AIChE J, 2001, 47: 1706–1710CrossRefGoogle Scholar
  108. 108.
    Tirrell M. AIChE J, 2005, 51: 2386–2390CrossRefGoogle Scholar
  109. 109.
    Goldberg AD, Allis CD, Bernstein E. Cell, 2007, 128: 635–638CrossRefGoogle Scholar
  110. 110.
    Chen W, Jin J, Gu W, Wei B, Lei Y, Xiong S, Zhang G. J Biotech, 2014, 189: 104–113CrossRefGoogle Scholar
  111. 111.
    Materials Genome Initiative for Global Competitiveness. Washington, D. C.: National Science and Technology Council, 2011 (https://www.whitehouse.gov/mgi)Google Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular EngineeringPeking UniversityBeijingChina
  2. 2.College of Polymer Science and Polymer EngineeringThe University of AkronAkronUSA

Personalised recommendations