Science China Chemistry

, Volume 60, Issue 6, pp 701–720 | Cite as

Recent advances in direct dehydrogenative biphenyl couplings

  • Fei Lv
  • Zhu-Jun Yao
Mini Reviews


Biphenyl moiety represents a unique structural motif of many natural and unnatural products with biological interests, and dehydrogenative couplings of two aryl C–H bonds under oxidative conditions is unambiguously the most efficient and direct preparation of these compounds. However, higher oxidation potential of benzene derivatives makes such oxidative couplings much more difficult than other arenes. Only very limited advances have been achieved on direct formation of the crucial C–C bond between two phenyl derivatives by dehydrogenative phenyl coupling in the last two decades. This article briefly summarized and commented a number of representative recent achievements in this attractive field, including homo-, cross- and intramolecular rearrangement and couplings, as well as their applications in organic synthesis.


biphenyl dehydrogenative coupling oxidation arene C–H bond activation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (21472087).


  1. 1 (a).
    Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem Rev, 2002, 102: 1359–1470CrossRefGoogle Scholar
  2. (b).
    Kozlowski MC, Morgan BJ, Linton EC. Chem Soc Rev, 2009, 38: 3193CrossRefGoogle Scholar
  3. 2.
    Hussain I, Singh T. Adv Synth Catal, 2014, 356: 1661–1696CrossRefGoogle Scholar
  4. 3.
    Yeung CS, Dong VM. Chem Rev, 2011, 111: 1215–1292CrossRefGoogle Scholar
  5. 4.
    Gorelsky SI. Coordin Chem Rev, 2013, 257: 153–164CrossRefGoogle Scholar
  6. 5.
    Ashenhurst JA. Chem Soc Rev, 2010, 39: 540–548CrossRefGoogle Scholar
  7. 6.
    Fujiwara Y, Moritani I, Ikegami K, Tanaka R, Teranishi S. Bull Chem Soc Jpn, 1970, 43: 863–867CrossRefGoogle Scholar
  8. 7.
    Mukhopadhyay S, Rothenberg G, Lando G, Agbaria K, Kazanci M, Sasson Y. Adv Synth Catal, 2001, 343: 455–459CrossRefGoogle Scholar
  9. 8.
    Pintori DG, Greaney MF. Org Lett, 2011, 13: 5713–5715CrossRefGoogle Scholar
  10. 9.
    Zhang C, Rao Y. Org Lett, 2015, 17: 4456–4459CrossRefGoogle Scholar
  11. 10.
    Li R, Jiang L, Lu W. Organometallics, 2006, 25: 5973–5975CrossRefGoogle Scholar
  12. 11.
    Wei Y, Su W. J Am Chem Soc, 2010, 132: 16377–16379CrossRefGoogle Scholar
  13. 12.
    Li H, Liu J, Sun CL, Li BJ, Shi ZJ. Org Lett, 2011, 13: 276–279CrossRefGoogle Scholar
  14. 13.
    Hull KL, Sanford MS. J Am Chem Soc, 2007, 129: 11904–11905CrossRefGoogle Scholar
  15. 14.
    Li BJ, Tian SL, Fang Z, Shi ZJ. Angew Chem Int Ed, 2008, 47: 1115–1118CrossRefGoogle Scholar
  16. 15.
    Brasche G, García-Fortanet, J, Buchwald SL. Org Lett, 2008, 10: 2207–2210CrossRefGoogle Scholar
  17. 16.
    Yeung CS, Zhao X, Borduas N, Dong VM. Chem Sci, 2010, 1: 331CrossRefGoogle Scholar
  18. 17.
    Zhao X, Yeung CS, Dong VM. J Am Chem Soc, 2010, 132: 5837–5844CrossRefGoogle Scholar
  19. 18.
    Watanabe T, Ueda S, Inuki S, Oishi S, Fujii N, Ohno H. Chem Commun, 2007, 4516Google Scholar
  20. 19.
    Watanabe T, Oishi S, Fujii N, Ohno H. J Org Chem, 2009, 74: 4720–4726CrossRefGoogle Scholar
  21. 20.
    A review on new synthesis of carbazoles, see: Knölker HJ. Chem Lett, 2009, 38: 8–13CrossRefGoogle Scholar
  22. 21.
    Liégault B, Lee D, Huestis MP, Stuart DR, Fagnou K. J Org Chem, 2008, 73: 5022–5028CrossRefGoogle Scholar
  23. 22.
    Samanta R, Antonchick AP. Angew Chem Int Ed, 2011, 50: 5217–5220CrossRefGoogle Scholar
  24. 23.
    Wang B, Liu Y, Lin C, Xu Y, Liu Z, Zhang Y. Org Lett, 2014, 16: 4574–4577CrossRefGoogle Scholar
  25. 24.
    Sharma VB, Jain SL, Sain B. J Mol Catal A-Chem, 2004, 219: 61–64CrossRefGoogle Scholar
  26. 25.
    Boldron C, Aromí G, Challa G, Gamez P, Reedijk J. Chem Commun, 2005, 5808Google Scholar
  27. 26.
    Sharma S, Barooah N, Baruah JB. J Mol Catal A-Chem, 2005, 229: 171–176CrossRefGoogle Scholar
  28. 27 (a).
    Xu Z, Kozlowski MC. J Org Chem, 2002, 67: 3072–3078CrossRefGoogle Scholar
  29. (b).
    Hewgley JB, Stahl SS, Kozlowski MC. J Am Chem Soc, 2008, 130: 12232–12233CrossRefGoogle Scholar
  30. (c).
    Lee YE, Cao T, Torruellas C, Kozlowski MC. J Am Chem Soc, 2014, 136: 6782–6785CrossRefGoogle Scholar
  31. 28.
    Bordwell FG, Cheng J. J Am Chem Soc, 1991, 113: 1736–1743CrossRefGoogle Scholar
  32. 29.
    Huang Z, Lumb JP. Angew Chem Int Ed, 2016, 55: 11543–11547CrossRefGoogle Scholar
  33. 30.
    Zhang GF, Zhao XB, Ding CR, Liu HJ. Chinese J Org Chem, 2011, 31: 1736–1751Google Scholar
  34. 31 (a).
    Lu P, Boorman TC, Slawin AMZ, Larrosa I. J Am Chem Soc, 2010, 132: 5580–5581CrossRefGoogle Scholar
  35. (b).
    Cambeiro XC, Boorman TC, Lu P, Larrosa I. Angew Chem Int Ed, 2013, 52: 1781–1784CrossRefGoogle Scholar
  36. 32.
    Jiang Q, Sheng WB, Tian M, Tang J, Guo CC. Eur J Org Chem, 2013: 1861Google Scholar
  37. 33.
    Libman A, Shalit H, Vainer Y, Narute S, Kozuch S, Pappo D. J Am Chem Soc, 2015, 137: 11453–11460CrossRefGoogle Scholar
  38. 34.
    Saitoh T, Yoshida S, Ichikawa J. Org Lett, 2004, 6: 4563–4565CrossRefGoogle Scholar
  39. 35.
    Saitoh T, Yoshida S, Ichikawa J. J Org Chem, 2006, 71: 6414–6419CrossRefGoogle Scholar
  40. 36.
    Tohma H, Morioka H, Takizawa S, Arisawa M, Kita Y. Tetrahedron, 2001, 57: 345–352CrossRefGoogle Scholar
  41. 37: (a).
    37 Reviews on D-glucose-based chiral biaryl synthesis in ellagitannin chemistry: (a)_Quideau S, Feldman KS. Chem Rev, 1996, 96: 475–504CrossRefGoogle Scholar
  42. (b).
    Khanbabaee K, van Ree T. Synthesis, 2001: 1585Google Scholar
  43. 38.
    Arisawa M, Utsumi S, Nakajima M, Ramesh NG, Tohma H, Kita Y. Chem Commun, 1999, 469–470Google Scholar
  44. 39.
    Dohi T, Ito M, Morimoto K, Iwata M, Kita Y. Angew Chem Int Ed, 2008, 47: 1301–1304CrossRefGoogle Scholar
  45. 40.
    Zinin N. J Prakt Chem, 1845, 36: 93CrossRefGoogle Scholar
  46. 41.
    Li JJ. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications. Switzerland: Springer International Publishing, 2014. 659–660CrossRefGoogle Scholar
  47. 42.
    Hong WX, Chen LJ, Zhong CL, Yao ZJ. Org Lett, 2006, 8: 4919–4922CrossRefGoogle Scholar
  48. 43.
    Yu SM, Hong WX, Wu Y, Zhong CL, Yao ZJ. Org Lett, 2010, 12: 1124–1127CrossRefGoogle Scholar
  49. 44.
    De CK, Pesciaioli F, List B. Angew Chem Int Ed, 2013, 52: 9293–9295CrossRefGoogle Scholar
  50. 45.
    Waldvogel SR. Pure Appl Chem, 2010, 82: 1055CrossRefGoogle Scholar
  51. 46.
    Barjau J, Schnakenburg G, Waldvogel SR. Angew Chem Int Ed, 2011, 50: 1415–1419CrossRefGoogle Scholar
  52. 47.
    Morofuji T, Shimizu A, Yoshida J. Angew Chem Int Ed, 2012, 51: 7259–7262CrossRefGoogle Scholar
  53. 48.
    Kirste A, Schnakenburg G, Stecker F, Fischer A, Waldvogel SR. Angew Chem Int Ed, 2010, 49: 971–975CrossRefGoogle Scholar
  54. 49.
    Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew Chem Int Ed, 2014, 53: 5210–5213Google Scholar
  55. 50.
    Lips S, Wiebe A, Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew Chem Int Ed, 2016, 55: 10872–10876CrossRefGoogle Scholar

Copyright information

© Science China Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical EngineeringNanjing UniversityNanjingChina
  2. 2.Collaborative Innovation Center of Chemistry for Life SciencesNanjing UniversityNanjingChina

Personalised recommendations